Compare the observations and recordings made at the two sites with predictions made from the characteristics of a ‘theoretical’ river.

Authors Avatar

Introduction

At the beginning of July 2002, we went to study two sites on the River Bovey in Devon. The initial site of enquiry was at the source of the river (Site 1 – grid reference SX 694829) where we collected data on the characteristics of the bedload, the velocity of the water and the cross-sectional area and bankfull level of the river. We then repeated this data collection at a second location (Site 2 – SX 779801) approximately 15km downstream near the mid-point of the river’s course.

The River Bovey is situated inside the Dartmoor National Park in the Southwest of England. Dartmoor is a large intrusive granite landform with many areas exposed through years of erosion and weathering. The moorland’s high altitude results in extensive amounts of relief rainfall which, along with the park’s impermeable rock-type, means the area has a high drainage density.

The two sites in the catchment area studied have very similar rock-type and climate conditions but differ slightly in other relevant features. Site 1 is approximately 415m above sea level and is situated in an area of steep, upland moorland on peaty gley soils. The vegetation surrounding the source consists of a variety of shrubs, ferns and heathland, the culmination of these characteristics and the local climate and impermeable rock-type results in the ground being saturated for lengthy periods of the year. Site 2 on the other hand lies roughly 345m lower at 70m above sea level and is in a gentler-sloping landscape with mainly brown earths. The vegetation surrounding the immediate area of the second site is that of deciduous woodland.

The two separate sites were chosen because the different characteristics they have resulting from their separate points along the river. This should give us a clear view on how a river changes from its youthful stage in it’s upper course to the forms and processes it has later on it’s journey towards the sea.

Map showing area covered by the River Bovey and the location of the two sites studied:

Scale:                        10km

River Bovey:                                                National Park boundary:

Site 1:                                                        Site 2:

Hypotheses

The purpose of this fieldwork is to compare the observations and recordings made at the two sites with predictions made from the characteristics of a ‘theoretical’ river.

The three factors that I have chosen to make hypotheses on are i) the average velocity of the river ii) the bedload size and iii) the discharge of the river. I have decided to study these three river attributes because if observed and recorded accurately and fairly, they should give me a clear indication of how these characteristics will change depending on which point of the course the river is at.

Velocity: I predict that the average velocity of the river will be greater at Site 2 than at Site 1.

A river in a deep, broad channel, often with a gentle gradient and small bedload like Site 2, should have a greater velocity than a river in it’s youthful stage with a shallow, narrow, rock-filled channel like Site 1 – even if the latter has a steeper gradient. The river at Site 1 will probably have a large number of angular rocks, rough banks and protrusions that would increase friction and reduce the overall velocity. As there will probably be less resistance from the smoother bed and banks at Site 2, the river will flow faster because of the lack of friction. Also, the velocity should increase as the depth, width and discharge of the river all increase.

Discharge: I predict that the discharge of the river will be greater at Site 2 than at Site 1.

Join now!

Discharge is the volume of water that flows through a section of the river at a given time. It is calculated by multiplying the average velocity (ms-1) of the river by its cross-sectional area (m2), giving the discharge as cubic metres per second – cumecs (m3s-1). Downstream at Site 2, I predict that the cross-sectional area will be larger than that at Site 1 because the river will have had enough energy and bedload to erode wider sides and a deeper, smoother bed without large boulders obstructing the flow. The increased area and velocity should together result in an ...

This is a preview of the whole essay