They are Local Area Networks (LANs) that use electromagnetic airwaves as their transmission medium. Instead of the technical issues associated with twisted-pair, Co-axial and fiber-optic wires, the organization must adapt to the differences of radio based communication.

          The basic components of an 802.11 WLAN (wireless LAN) include one or more stations and an AP (access point). A station is usually a laptop with a wireless Network interface card. An AP provides the wireless link between the stations and a wired LAN, or it may only relay packets from one station to another. The 802.11 standard supports three methods using the physical layer for transmitting data through space. One uses infrared light, and the other two-use spread-spectrum-radio (radio frequency).

           Radio: (penetrates indoor walls & surfaces)

                 Wideband / Spread Spectrum:

                            1.  FHSS (Frequency Hopping)

                            2.   DSSS (Direct Sequence)

                  3. Infrared (blocked by solid objects)

The FHSS (frequency-hopping spread-spectrum):

       Has the advantage of a relatively simple design, but it has an upper bandwidth of only 2 Mbps under FCC rules in the U.S. Because FHSS does not support data rates greater than 2 Mbps it is not used in the IEEE standard, 802.11b.

 The DSSS (direct-sequence spread-spectrum):

        This method allows for much higher data rates by dividing the 2.4-GHz band into 14 22 MHz channels. In DSSS, the data is encoded into redundant bit patterns, or "chips." When a chip is transmitted, the total power of the DSSS signal is spread across one of the 22-MHz channels .The chip encoding and spread-spectrum techniques provide data redundancy in DSSS radios. The 1 Mbps DSSS data rate uses BPSK (binary-phase-shift-keying) modulation. The 2-Mbps data uses QPSK (quadrature-phase-shift-keying) modulation. The 802.llb standard also uses QPSK modulation for the 5.5- and 11-Mbps data rates, but it uses a more sophisticated encoding technique, CCK (complementary-code keying), that increases a radio receiver's ability to distinguish encoded bits in the presence of interference. When interference or range becomes too great for 11 -Mbps operation, the 802.1lb specifications allows the transceiver's data rate to fall back to 5.5, 2, or 1 Mbps. Negatively speaking, DSSS uses more power and is more costly to build.

Join now!

Infrared:

     Infrared technology is limited because transmission must be within line of sight.  Infrared (IR) systems use very high frequencies, just below visible light in the electromagnetic spectrum, to carry data. Inexpensive directed systems provide very limited range (3 ft) and typically are used only for personal area networks. Diffuse IR wireless LAN systems do not require line-of-sight, but cells are limited to individual rooms. Most people can relate to this problem because they are familiar with remote control devices for television and videocassette recorders.

How They Operate: 802.11 Standard MAC Layer specifications:

      One level ...

This is a preview of the whole essay