• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

C3 Numerical Solutions to Equations

Extracts from this document...

Introduction

Adam Arstall

Numerical Solutions to Equations Coursework

Change of sign method

The change of sign method involves finding the interval in which a root of an equation lies by taking two values of x and showing that the root lies between them as the value of f(x) for each case has a different sign. A change of sign will always indicate a root if the function is continuous.

This method will be used to find a root of the equation f(x)=x⁵+x⁴−2x³+5x²−7x−2=0. As the function f(x) is continuous, a change of sign will always indicate a root.

image00.png

The method will be used to find the root which lies between -2 and -3

image01.png

As the root lies in the interval [-2.7211575,-2.7211574], x=-2.72115745 ± 0.000000005

image09.png

Here it is shown that f(x) changes from negative to positive between -2.7211575 and-2.7211574 and the root to f(x)=0 is between these x values.

This method can fail to find roots in some cases. For example if the equation has a repeated root as shown below for the equation x³−0.96x²−5.

...read more.

Middle

Therefore x=-1.53407020 ± 0.000000005

To confirm this root there must be a change of sign. f(-1.5340703) = 1.16*10^-6.

f(-1.5340701) = -1.08*10^-6. Therefore there is a root as the function is continuous.

image13.png

image14.png

These two diagrams show the convergence of the iterations at different magnifications. It is shown that the root lies between -1.53407035 and -1.53407025.

Taking 1 as the first guess gives the following results

image15.png

Therefore x=0.48269595 ± 0.000000005

f( 0.48269594) = -1.08*10^-7. f(0.48269596) = 0.0113

Therefore there is a root as the function is continuous.

Taking 4 as the first guess gives

Therefore x=4.05137424 ± 0.000000005image16.png

f(4.05137423) = 2.34*10^-7  f(4.05137425) = -1.65*10^-7

Therefore there is a root as the function is continuous.

This method can fail for some starting points such as ones where the gradient of the curve is very small which can lead to the iterations converging on the wrong root. For the equation ¼x³−½x²−2x+3=0, an initial guess of 2.35 to find the root between 0 and 3 makes the iteration converge on the root between -4 and -2 as shown below.

image02.png

Rearranging f(x)=0 in the form x=g(x)

In this method the equation f(x)

...read more.

Conclusion

The change of sign method was fairly easy to use as it requires little extra hardware or software and can be carried out manually if necessary using only a calculator. This makes it particularly useful if computer software is not available. However the need for much manual computation can make the process quite laborious and time consuming. The Newton-Raphson and x=g(x) methods are relatively similar in terms of ease of use with hardware and software. Both make good use of Autograph software visually interpret equations before using an Excel spreadsheet to carry out the calculations to find each root. Compared to the change of sign method both are generally more easy to use as once the initial formula has been entered it is very quick and simple to do the iterations many times.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    3 star(s)

    Figure8 (a) shows that even there is still wide gap between the predict line and real line, but the gap closer than the before from 1950-1982. In addition, the Figure8 (b) also displays a random between the residuals. For the second reason the uncertainty leads the households save more and spend less.

  2. OCR MEI C3 Coursework - Numerical Methods

    x f(x) -1.60 -1.08576 -1.59 -0.80215 -1.58 -0.52658 -1.57 -0.2589 -1.56 0.001042 Change of sign indicates root exists in interval [-1.57,-1.56] x=-1.565�0.005 x=-1.6 (1d.p.) x f(x) -1.570 -0.2589 -1.569 -0.23256 -1.568 -0.2063 -1.567 -0.18011 -1.566 -0.154 -1.565 -0.12797 -1.564 -0.10202 -1.563 -0.07614 -1.562 -0.05033 -1.561 -0.02461 -1.560 0.001042 Change of sign indicates root exists in interval [-1.561,-1.560] x=-1.5605�0.0005 x=-1.56 (2d.p.)

  1. Numerical solutions of equations

    The error bound is: 0.0000000005 However, the Newton-Raphson method would not work with the graph below: If I start from the turning point of the curve, I do not think it will converge (see Figure 4). The equation for this function is 0 = x4+2x3+3x-4 f'(x)

  2. Numerical Solutions of Equations

    Differentiate the equation f'(x) = 3x�-13. x2= 3 - 3�- (13*3)+14 (3*3�)-13 x2= 3 - 2 14 x2= 2.85714 By using this same method, but shortened significantly by using the ANS button on my calculator, I will find x3,, x4 etc x3 = 2.84423 x4 = 2.84181 x5 = 2.84134

  1. Solving Equations. Three numerical methods are discussed in this investigation. There are advantages and ...

    Excel spread sheet had also set up for observation: n xn g(xn) n xn g(xn) 1 1.000000 1.259921 1 0.000000 -1.259921 2 1.259921 1.545934 2 -1.259921 -1.103854 3 1.545934 1.804074 3 -1.103854 -1.209809 4 1.804074 2.009745 4 -1.209809 -1.142763 5 2.009745 2.161424 5 -1.142763 -1.187299 6 2.161424 2.268011 6 -1.187299

  2. C3 Coursework: Numerical Methods

    Therefore, the root of the equation, y=3x3-11x+7, is 0.7526 with an error bound of �0.00005. I shall now use the x=g(x) method to solve the equation y=3x3-11x+7. As with the Change of Sign and Newton Raphson methods I shall use the point x=0 as my starting point.

  1. MEI numerical Methods

    Furthermore on excel all you need is the formula, once you've created this that's all you need. For example we can change the value of K and the formula would take this into account and would calculate the new root accordingly.

  2. Numerical Solutions of Equations.

    I have now solved the root to an accuracy of four decimal places. It lies in the interval [0.49268,0.49269] and is x = 0.492685 ?0.000005. The table on the left shows this. When x = (0.492685 + 0.000005) = 0.49269, y is +0.000005.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work