• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

Coding and Modelling - The tools used in my spreadsheets.

Extracts from this document...


Coding and Modellingimage00.pngimage01.png

The tools used in my spreadsheets:

  • Cell outline - to make my grid standout from the page

  • Different font styles – to make the column headings standout from the rest of the text
  • A centre justification tool – in order to make my spreadsheets look professional
  • The graphing feature – enabling me to draw up graphs from my data
  • Various mathematical calculations such as multiplying cells and the what if function – allowing me to save time and fully investigate my project

This is seen as an inappropriate graph because it only shows how the height affects the volume of the box when the question asks you how the cutout size affects the volume of a square of side 24cm:



For a square of size 24cm, the largest volume of box that can be made is 1024cm3, using a square cutout of 4cm.

For a square of size 120cm, the largest volume of box that can be made is 128000cm3, using a square cutout of 20 cm.

Final Conclusion

In both cases, it would appear that a trend emerges.

In each case the optimum cutout size is 1/6 of the size of the square sheet


...read more.


                15 cm                                                         (15 cm – 2x)

                                       x cmimage11.png

                                        (23 cm –2x)

Question 2b)Similarly for a rectangle with a length of 23cm, a width of 15cm and a cutout size of x cm, a box can be formed of volume (y):

= Length * Width * Height

= (23 – 2x) * (15 – 2x) * x

= 345x – 76x2 + 4x3

Essentially differentiating is done by taking an equation:

xn and applying the principle nx(n-1)

Therefore if: y = 345x – 76x2 + 4x3                =>dy= 345 – 152x + 12x2


resulting in a quadratic equation, which can be solved by:

x =  -b + or -        √b2 – 4ac             hence x = - (-152) + or - √ (152)2 – 4 (345)(12)

               2a                                                     2(12)  

x = 152 + or - √ 23104 - 16560


x = 9.704cm (4s.f) and 2.963cm (4s.f)

Clearly the cutout size cannot be 9.704cm (4s.f) since the rectangular box is only 15cm wide. The only other possible cutout dimension would be 2.963cm (4s.f).

Instead of creating a new spreadsheet, I can change values within an old spreadsheet to suit the new condition I want.


For example in the above spreadsheet, I predict that if I change cell B2 to 23 cell B5 and the rest of the column going downwards will change subtracting 1 each time from the value because of the formula =B2-2*A5.

...read more.


2 – 4ac             hence x = - (-140) + or - √ (140)2 – 4 (300)(12)

               2a                                                     2(12)  

x = 140 + or - √ 19600 - 14400


x = 8.838(4s.f) and 2.829cm (4s.f)

I have investigated five different rectangles, the results of which can be seen on the spreadsheet below:


Final Conclusion:

As you can see from the graph and the spreadsheet, my final prediction was right. As the length and width values get closer together, the optimum cutout size gets smaller because the volume size decreases.

I feel that my results have been very accurate because not only did I solve various formulae using differentiation but I also checked the results by constructing charts and graphs which showed me the optimum values. This has led to valid conclusions especially for the square Max Box where I achieved a general formula. I know that my other conclusion is valid because I have tested out the theory by doing lots of examples.

I feel that my results were also relevant because once I had found out that the cutout size affects the volume of the box, I was able to continue further in order to see whether a pattern emerged when investigating how the size of the length affected the cutout size when the width of the box remained constantly at 15cm. Unfortunately, I was unable to find a general formula for the rectangle Max Boxes.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    The Gradient Function

    5 star(s)

    Here, I shall investigate some further "a" and x values to find the overall gradient function for axn; this will bring my investigation to a close. 3x� is suitable for the next investigative values.

  2. Marked by a teacher

    Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    3 star(s)

    DW=2 if there is no serial correlation. DW=4 if there is extreme negative serial correlation. Usually, DW used as an information check should be around 2. In this circumstance, DW = 0.498 which is too far away from 2, means that the data not fits the equation well.

  1. The open box problem

    The graph is symmetrical. Now that I have found the maximum volume possible for 6x6, I will now investigate more squares by now finding the maximum volume possible for a square with lengths 12x12, then I will see if I can see a pattern.

  2. Mathematical Investigation

    along the x-axis. Figure #7: Graphs of the sine functions of y=-sin(x) and y=sin(x). Figure # 7 is identical to Figure #6. This observation shows the position of the negative sign in front of the function produces the same results as would placed in front of the angle, x.

  1. Repeated Differentiation

    start: y = sin(x) yI = cos(x) yII = - sin(x) yIII = - cos(x) yIV = sin(x) From the rules of differentiation we know that to differentiate a function such as sin(3x2 + 4) we simply differentiate sin to cos of the bracket, and multiply by the differential of the bracket.

  2. Functions Coursework - A2 Maths

    The graph y=f(x) is shown: There are three visible roots to the equation. I will take an approximate root for the root in interval [2,3] to be 3. As I shall explain later, the Newton-Raphson iteration will hopefully converge to the root in interval [2,3].

  1. The Gradient Fraction

    This graph will be at a minimum curve. When a curve is at a minimum it always encompasses a gradient which goes from a negative to a positive. y=x2 is a minimum curved graph. Results x Gradient 3 6.54 4 8.33 -2 -4.44 From this graph, the results achieved are not absolute accurate, this is due to the graph plot.

  2. Investigating the Quadratic Function

    If a value is added to 'x' the parabola moves to the left and the value on the x-axis is negative. To prove this I am going to use the function in graph F: The graph shows the x value to be -3 whereas the value being added to x is +3.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work