• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Coding and Modelling - The tools used in my spreadsheets.

Extracts from this document...

Introduction

Coding and Modelling  The tools used in my spreadsheets:

• ## Cell outline - to make my grid standout from the page

• Different font styles – to make the column headings standout from the rest of the text
• A centre justification tool – in order to make my spreadsheets look professional
• The graphing feature – enabling me to draw up graphs from my data
• Various mathematical calculations such as multiplying cells and the what if function – allowing me to save time and fully investigate my project

This is seen as an inappropriate graph because it only shows how the height affects the volume of the box when the question asks you how the cutout size affects the volume of a square of side 24cm: Results:

For a square of size 24cm, the largest volume of box that can be made is 1024cm3, using a square cutout of 4cm.

For a square of size 120cm, the largest volume of box that can be made is 128000cm3, using a square cutout of 20 cm.

## Final Conclusion

In both cases, it would appear that a trend emerges.

## In each case the optimum cutout size is 1/6 of the size of the square sheet

i.e.

Middle

15 cm                                                         (15 cm – 2x)

x cm (23 cm –2x)

Question 2b)Similarly for a rectangle with a length of 23cm, a width of 15cm and a cutout size of x cm, a box can be formed of volume (y):

= Length * Width * Height

= (23 – 2x) * (15 – 2x) * x

= 345x – 76x2 + 4x3

Essentially differentiating is done by taking an equation:

xn and applying the principle nx(n-1)

Therefore if: y = 345x – 76x2 + 4x3                =>dy= 345 – 152x + 12x2

dx

resulting in a quadratic equation, which can be solved by:

x =  -b + or -        √b2 – 4ac             hence x = - (-152) + or - √ (152)2 – 4 (345)(12)

2a                                                     2(12)

x = 152 + or - √ 23104 - 16560

24

x = 9.704cm (4s.f) and 2.963cm (4s.f)

Clearly the cutout size cannot be 9.704cm (4s.f) since the rectangular box is only 15cm wide. The only other possible cutout dimension would be 2.963cm (4s.f).

Instead of creating a new spreadsheet, I can change values within an old spreadsheet to suit the new condition I want. For example in the above spreadsheet, I predict that if I change cell B2 to 23 cell B5 and the rest of the column going downwards will change subtracting 1 each time from the value because of the formula =B2-2*A5.

Conclusion

2 – 4ac             hence x = - (-140) + or - √ (140)2 – 4 (300)(12)

2a                                                     2(12)

x = 140 + or - √ 19600 - 14400

24

x = 8.838(4s.f) and 2.829cm (4s.f)

I have investigated five different rectangles, the results of which can be seen on the spreadsheet below: Final Conclusion:

As you can see from the graph and the spreadsheet, my final prediction was right. As the length and width values get closer together, the optimum cutout size gets smaller because the volume size decreases.

I feel that my results have been very accurate because not only did I solve various formulae using differentiation but I also checked the results by constructing charts and graphs which showed me the optimum values. This has led to valid conclusions especially for the square Max Box where I achieved a general formula. I know that my other conclusion is valid because I have tested out the theory by doing lots of examples.

I feel that my results were also relevant because once I had found out that the cutout size affects the volume of the box, I was able to continue further in order to see whether a pattern emerged when investigating how the size of the length affected the cutout size when the width of the box remained constantly at 15cm. Unfortunately, I was unable to find a general formula for the rectangle Max Boxes.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Core & Pure Mathematics essays

1.  5 star(s)

The gradient applies to nx n-1, because the power is always decreased by 1. Once multiplied through by the n value, and then n is decreased by 1, the answer is given. However, these may be isolated results and I shall have to clearly investigate other values of "a" and

2. ## Numerical integration can be described as set of algorithms for calculating the numerical value ...

and two consecutive calculations are complete, the cells can be dragged down and the answers required appear. Excel is able to do this as it follows the formula and is judicious.

1. If you round the values up and down to their lowest terms and highest terms, they will equal to the following: x=2: 7.82 (round up to 8) the 2 has been multiplied by 4. x=3: 12.41 (round down to 12)

2. ## maths pure

Also, the last value of f(x) which is progressively becoming smaller in size, is so small that any further iterations will not produce any significantly different values since the change in x is given by f(x)/f?(x)The root is therefore ?2.23607 to 5 dp.

1. ## Functions Coursework - A2 Maths

The graph y=f(x) is shown: There are three visible roots to the equation. I will take an approximate root for the root in interval [2,3] to be 3. As I shall explain later, the Newton-Raphson iteration will hopefully converge to the root in interval [2,3].

2. ## Numerical Differentiation

x y 0 0 1 -0.070373 2 -0.1784121 3 -0.4830918 4 5.0632911 5 0.5107252 Newton-Raphson Method xr+1 = xr - f (xr) f '(xr) y= 4ln|x| - x + 2 dy= -1 + 4 dx x0 1 x0 6 x1 0.666666667 x1 15.50111363 x2 0.724372086 x2 12.08113601 x3 0.727506177 x3

1. ## Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

The function now looks as follows: ct = 0.7273 + 0.9403yt As mentioned earlier, consumers look to their expected lifetime income when deciding expenditure. This theory has been explored and modelled by a number of economists most notably Friedman with his Permanent Income Hypothesis (PIH).

2. ## Mathematical Investigation

the value of c tells how much each wave moves 3. The sign of "c" of the zero of (bx+c) dictates the direction of translation of the waves; positive "c" tells the wave to move to the right (in reference to y=sin(x).); negative "c" tells the wave to move to the left (in reference to y=sin(x)). • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to 