• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

Compare the heights of girls and boys in year 8 and the sixth form.

Extracts from this document...


INTRODUCTION TO TASK & HYPOTHESIS The purpose of this exercise is to compare the heights of girls and boys in year 8 and the sixth form, in an attempt to show the following. That in year 8, girls and boys will have more similarities in height, but girls are more likely to be taller than the boys. In sixth form there will be greater differences between the heights of boys and girls and the boys are more likely to be taller. That there will be a much greater difference in the heights of boys between year 8 and sixth form than between the girls. I will attempt to show this by measuring the heights of boys and girls in year eight and the sixth form. In each case a sample size of fifty will be used in order to produce statistically valid results according to the central limit theorem. This will be done, by obtaining a sample that accurately represents each group. Firstly a list of boys and a list of girls in year eight and the sixth form will be formulated giving each student a number. Then a random number generator will be used to select fifty boys and fifty girls from each year group. I will measure the selected groups independently using the measuring device illustrated below. ...read more.


Standard error The standard deviation of the distribution of sample means is called the standard error. 1 s.e = ?�/n (variance of the distribution of x = ?�/n) In previous calculations I have only worked out the mean x and variance s� of my sample. I cannot calculate confidence intervals for population mean � because I do not know ?�. Unfortunately s� is not an unbiased estimator of ?� (i.e. the mean of the distribution of s� is not equal to ?�). However Is an unbiased estimator of population variance, and I can use this as an estimate of ?� when calculating standard error in order to produce confidence intervals for �. So in order to calculate the standard errors for each of my groups I must first calculate an estimate for ?�, using the above formulae. CALCULATIONS FOR THE ESTIMATES ?� AND STANDARD ERRORS I have previously calculated the mean (x) and standard deviation (s�) for each of my groups. I will now calculate an estimate for ?� in order to calculate the standard errors and formulate confidence intervals for each of my groups. To estimate ?� I will use the previously stated formula. And then using these estimates for ?� I will calculate the standard errors using the formula. CONFIDENCE INTERVALS If we have one sample mean x then P(� - 1s.e < x < � + 1s.e), but this can ...read more.


The accuracy of my results would improve by using a larger sample size e.g. 100 girls and boys from each year group, according to the central limit theorem. However, this was not possible due to the amount of people available to measure and the amount of time allocated. I could have improved the sample further by taking groups of students from different schools in different areas, this may have given a more accurate representation of the population, as the ranges of heights in different areas for each group may be more varied. However this would have been very difficult to do and would have taken too long, also I don't think it would have shown any great difference in my findings, as the heights of boys and girls in each group throughout the region are most likely to be fairly similar to those I measured. If I had had more time it would have been interesting to find out where exactly the changes in the heights of boys and girls actually occurs. This could have been done by taking a sample of fifty girls and fifty boys from each of the years in between year eight and the sixth form, and again calculate confidence intervals to see when the boys go from being the same height or shorter than the girls to being much taller than them. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Probability & Statistics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Probability & Statistics essays

  1. Marked by a teacher

    The heights of 16-18 year old young adults varies between males and females. My ...

    5 star(s)

    x^2 F xF x^2F 5ft 2inc 62 3844 1 62 3844 5ft 3inc 63 3969 0 0 0 5ft 4inc 64 4096 2 128 8192 5ft 5inc 65 4225 2 130 8450 5ft 6inc 66 4356 2 132 8712 5ft 7inc 67 4489 3 201 13467 5ft 8inc 68 4624

  2. AS statistics coursework - correlation coefficient between height and weight in year 11 boys ...

    Sxx = Syy = Sxy = Linear Regression And The Least Squares Regression Line Regression is the process by which you can determine the function satisfied by points on a scatter diagram. The function will give you points that will pass through the mean, (,).

  1. Used Cars - What main factor that affects the price of a second hand ...

    10.5 110.25 17.5 12 5.5 30.25 17.5 14 3.5 12.25 17.5 16 1.5 2.25 17.5 33.5 -16 256 17.5 37 -19.5 380.25 21.5 13 8.5 72.25 21.5 19 2.5 6.25 23 19 4 16 28 9 19 361 28 10 18 324 28 25 3 9 28 26 2 4

  2. Estimating the length of a line and the size of an angle.

    While in year 11 there are 287 students which 82 students are females and 205 students are males. From a total population of 451 students a sample about 10% of the total population is considered large enough to represent the whole population, which is about 30 students from each year.

  1. Standard addition was used to accurately quantify for quinine in an unknown urine sample ...

    Two other factors, also responsible for negative departures from linearity at high concentration, are self-quenching and self-absorption. Self-quenching is the result of collisions between excited molecules. Radiationless transfer of energy occurs. Self-quenching can be expected to increase with concentration because of the greater probability of collisions occurring.

  2. I am investigating how well people estimate the length of a line and the ...

    Year 7 and 10 Females Groups Frequency Cumulative frequency 0- 19 19 10- 5 24 20- 7 31 30- 4 35 40- 0 35 50- 0 35 60- 0 35 70- 0 35 80- 1 36 90- 0 36 100- 0 36 Cumulative frequency: 36 1/2(36+1)

  1. Chebyshevs Theorem and The Empirical Rule

    Careful records have been kept over a period of 2 years. The mean number of responses was 525 with a standard deviation of 30. What is the smallest percentage of responses in the interval between 375 and 675? Solution: The difference between the mean of 525 and the upper limit of this interval is 150.

  2. &amp;quot;The lengths of lines are easier to guess than angles. Also, that year 11's ...

    � < 45 8 5 0.6 42 336 45 ? � < 51 13 6 0.5 47.5 617.5 Total 33 1355 The mean of the above table is 1355/33=41.06�. This is 8.06� bigger than the actual angle, which shows that the year 11's again were better at estimating the size

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work