• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Describe two applications of linear programming to management problems. What are the main disadvantages of the technique?

Extracts from this document...

Introduction

(a) Describe two applications of linear programming to management problems.

           What are the main disadvantages of the technique?

When managers relate to the decision-making processes they face a problem of allocating several scarce resources. The opportunity cost of these scarce resources can be determined by the use of linear programming techniques. Linear programming was developed by George B. Dantzig in 1947 as a technique for planning the diversified activities of the U.S Air Force. Linear programming is a powerful mathematical technique that can be applied to the problem of rationing limited facilities and resources among many alternative uses in such a way that the optimum benefits can be derived from their utilization. The main objective of the linear programming problem is maximizing profit or minimizing cost. Applications of the linear programming are numerous in a variety of problem situations such as the blending problem and the product-mix problem.

One of the most important applications of linear programming is the formulation of blends which meet certain requirements at minimum cost. Blending problems occur whenever managers decide how to produce a blend out of specified commodities or constituents whose characteristics and costs are given.

...read more.

Middle

Series 1

     3X+Y=9

                     IF                X=0        therefore      Y=9                Point:(0,9)

                     IF                Y=0        therefore      X=3                Point:(3,0

Series 2

     X+Y=4

              IF                   X=0       therefore      Y=4                Point:(0,4)

              IF                   Y=0       therefore      X=4                Point:(4,0)

Series 3

     X=4

                     IF                  Y=0       therefore     X=4                 Point:(4,0)

               IF                  Y=10     therefore     X=4                  Point:(4,0)

 Third equation is a parallel straight line to the y-axis

Series 4

Y=6

               IF                  X=0      therefore     Y=6

               IF                  X=5      therefore     Y=6

 Fourth equation is a parallel straight line to the x-axis

First

Graphical representation:

image00.png

Suppose that the maximum profit is £200

then the objective function would be :

               O.F. 40X+20Y=200

                    When X=0      then       Y=10                  Point (0,10)

                    When Y=0      then       X=5                    Point (5, 0)

When the profit is equal to £200 the iso-profit curve (40X+20Y=200) is displayed above all 4 budget constraints. Therefore the iso profit curve is shifted south-west, parallel to itself, until it hits the highest point of an intersection between two budget constraints in the feasible region. This point is the number three in the figure above. The optimum point is      (1, 6) .That means 1 cow and 6 pigs.

...read more.

Conclusion

Therefore: if we increase the number of bushels by one at the right-hand side of the first   constraint                  then            3X+Y=10

                                                             and            Y      =6

               equation 4 into 1:              

                                                      3X+6=10

                                                       X=4/3   ,    Y=6

Plugging into the O.F:  40*(4/3) +20*(6) = £173⅓                                             Dual price for increase or decrease of bushel by 1 is £13⅓                                        

--------------------------------------------------------------------------------------------------

Now increase of 1 pig at the right-hand side of the fourth constraint                                                                                                            

                                                                                                Y=7

and   3X+Y=9

                        equation 4 into 1

3X+7=9

                                                      X=⅔    , Y=7

Plugging into the O.F:   40*(⅔) + 20*(7) = 166⅔

Dual price for an increase or decrease of a pig is £ 6⅔

Shadow price and dual price are exactly the same for all maximization linear programs. The economic meaning of shadow prices is very important for the managers. Shadow price is the changes in profit (positive or negative) of a marginal increase of scarce resources in any of the constraints in the linear programming procedure. Therefore the managers can gather information from the performance of each constraint and give emphasis to an increase of those resources with the highest opportunity cost or shadow price. In our case it would be beneficial, and more profitable for the farmer to increase the number of the bushels rather than the number of pigs to achieve a greater profit.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    3 star(s)

    But it will more precisely as it punish the insignificant value in the equation. The bigger the F stat the better. Compare the F-value in this equation with the first equation, which is 1.557e+004 and 1.404e+004. This means that the second equation works better than the first one, which gives opposite view from the R2.

  2. The open box problem

    at x when x is 2; and it says that y is 128. The graph is symmetrical. So I have found out the maximum volume for a square with lengths of 12x12. I will now try to find the maximum volume for a square of lengths 15 and then draw a table and hopefully find a pattern.

  1. Best shape for gutter and further alegbra - using Excel to solve some mathematical ...

    change according to the intentions of the designer, and so give high value feedback or other information, to the user" Using a spreadsheet in question 2 allows interactivity. Linked values are a defining feature of the spreadsheet. This capability to link and respond enables the spreadsheet to offer interactivity (Mathematical Association, 2002, p39).

  2. Sequences and series investigation

    nave obtained 'a' we can now substitute its value into the equation to find the other values. We can now find 'b' by substituting in 15 into the equation as follows: 5(_) + b = 4Y 5(_) = 6Y b = 4Y - 6Y b= -2 We have now found values a & b.

  1. Math Portfolio Type II - Applications of Sinusoidal Functions

    Assume that the function representing time of sunrise in terms of day number has a period of 365 days. Explain how the value of parameter b could be determined algebraically. The value of parameter could be determined algebraically by determining the period, which is 365 days.

  2. Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    Friedman's simplest form of PIH is that consumption is a constant proportion of permanent income, in other words: Ct = kYpt Where Yp is permanent income and k is the average propensity to consume. If logs are taken of this we get: logCt = log k + ´┐Żlog Ypt where

  1. Sequence & Series

    with 25 terms are 29 and 179. Find the sum of the series and the common difference. a=29, l=179 and n=25, therefore. Rearranging the formula to make d the subject, we obtain. 9. The sum of the first four terms of an A.P. is twice the 5th term.

  2. Experimentally calculating the wavelength of an He-Ne laser by means of diffraction gratings

    second/third fringes for the 600 lines/mm diffraction grating could not be found because they were too far away to practically calculate. Qualitative Data: As the diffraction grating spacing increases, the distance between the central beam and the first/second/third order fringes seems to decrease.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work