• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Describe two applications of linear programming to management problems. What are the main disadvantages of the technique?

Extracts from this document...

Introduction

(a) Describe two applications of linear programming to management problems.

           What are the main disadvantages of the technique?

When managers relate to the decision-making processes they face a problem of allocating several scarce resources. The opportunity cost of these scarce resources can be determined by the use of linear programming techniques. Linear programming was developed by George B. Dantzig in 1947 as a technique for planning the diversified activities of the U.S Air Force. Linear programming is a powerful mathematical technique that can be applied to the problem of rationing limited facilities and resources among many alternative uses in such a way that the optimum benefits can be derived from their utilization. The main objective of the linear programming problem is maximizing profit or minimizing cost. Applications of the linear programming are numerous in a variety of problem situations such as the blending problem and the product-mix problem.

One of the most important applications of linear programming is the formulation of blends which meet certain requirements at minimum cost. Blending problems occur whenever managers decide how to produce a blend out of specified commodities or constituents whose characteristics and costs are given.

...read more.

Middle

Series 1

     3X+Y=9

                     IF                X=0        therefore      Y=9                Point:(0,9)

                     IF                Y=0        therefore      X=3                Point:(3,0

Series 2

     X+Y=4

              IF                   X=0       therefore      Y=4                Point:(0,4)

              IF                   Y=0       therefore      X=4                Point:(4,0)

Series 3

     X=4

                     IF                  Y=0       therefore     X=4                 Point:(4,0)

               IF                  Y=10     therefore     X=4                  Point:(4,0)

 Third equation is a parallel straight line to the y-axis

Series 4

Y=6

               IF                  X=0      therefore     Y=6

               IF                  X=5      therefore     Y=6

 Fourth equation is a parallel straight line to the x-axis

First

Graphical representation:

image00.png

Suppose that the maximum profit is £200

then the objective function would be :

               O.F. 40X+20Y=200

                    When X=0      then       Y=10                  Point (0,10)

                    When Y=0      then       X=5                    Point (5, 0)

When the profit is equal to £200 the iso-profit curve (40X+20Y=200) is displayed above all 4 budget constraints. Therefore the iso profit curve is shifted south-west, parallel to itself, until it hits the highest point of an intersection between two budget constraints in the feasible region. This point is the number three in the figure above. The optimum point is      (1, 6) .That means 1 cow and 6 pigs.

...read more.

Conclusion

Therefore: if we increase the number of bushels by one at the right-hand side of the first   constraint                  then            3X+Y=10

                                                             and            Y      =6

               equation 4 into 1:              

                                                      3X+6=10

                                                       X=4/3   ,    Y=6

Plugging into the O.F:  40*(4/3) +20*(6) = £173⅓                                             Dual price for increase or decrease of bushel by 1 is £13⅓                                        

--------------------------------------------------------------------------------------------------

Now increase of 1 pig at the right-hand side of the fourth constraint                                                                                                            

                                                                                                Y=7

and   3X+Y=9

                        equation 4 into 1

3X+7=9

                                                      X=⅔    , Y=7

Plugging into the O.F:   40*(⅔) + 20*(7) = 166⅔

Dual price for an increase or decrease of a pig is £ 6⅔

Shadow price and dual price are exactly the same for all maximization linear programs. The economic meaning of shadow prices is very important for the managers. Shadow price is the changes in profit (positive or negative) of a marginal increase of scarce resources in any of the constraints in the linear programming procedure. Therefore the managers can gather information from the performance of each constraint and give emphasis to an increase of those resources with the highest opportunity cost or shadow price. In our case it would be beneficial, and more profitable for the farmer to increase the number of the bushels rather than the number of pigs to achieve a greater profit.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    3 star(s)

    and yt =log (Yt), ct is the elasticity of consumption respect to income. Another consumption function can be gained from the same data. It is: LC=+0.7504+0.9383*LY The R2 in this case is 0.996608. Compare with the first equation's R^2, which is 0.99624, this more close to unity.

  2. The open box problem

    and 135 so I will now construct another graph to zoom in more on the line. The graph shows that the value of x is definitely 2, and that the maximum volume is about 128, to verify this the box on the left of the graph says what the value of y is (volume)

  1. Sequences and series investigation

    - 2(102) + 2Y(10) - 1 = 13335 - 200 + 26Y - 1 = 1159 Sequence 15: N = 15 _(15�) - 2(152) + 2Y(15) - 1 = 4500 - 450 + 40 - 1 = 4089 This equation has correctly given me the number of squares in each sequence which again proves

  2. Best shape for gutter and further alegbra - using Excel to solve some mathematical ...

    best cross section to use for a gutter to carry the maximum water capacity is a semi circle. 2) Using Excel; it will take 21 months to clear the debt. Of which that last month is a small payment under �70.

  1. Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    more heavily and so if you take a geometrically declining weighted system you can estimate the consumption function using the following equation: ct=c0+c1yt+c2ct-1 Using the data the following equation can be obtained: ct = 0.1952 + 0.3486yt + 0.6364ct-1 Again we must look at whether this equation gives a satisfactory estimation of the consumption function.

  2. Estimate a consumption function for the UK economy explaining the statistical techniques you have ...

    The second graph on graph 1.1 shows consumption against time, it is clear to see that consumption tends to rise through time, but at a slower rate. Figure 1.1 By a closer examination of the data, it indicates that using changes in household disposable income to explain changes in consumption is not enough.

  1. Math Portfolio Type II - Applications of Sinusoidal Functions

    The values of the parameters a, b, c, and d to the nearest thousandth are: a = 1.627 b = 0.016 c = 111.744 d = 6.248 The equation that represents the time of sunrise as a function of day number, n, for Toronto through sinusoidal regression is f(n)

  2. Although everyone who gambles at all probably tries to make a quick mental marginal ...

    8100 Total = 8.07333 Due to the inaccuracy, the first estimate was obviously wrong. Adjusting the numbers is necessary: P = + Table 3:Second Estimate for Case 1 Reciprocal of odds Actual Payout Estimated Payout Difference Squared 10068347520 $2 000 000.00 $2 057 737.48 3333616596.75 228826080 $1721.80 $1833.71 12523.85 5085024

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work