• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14

Distribution of the weights of two types of sweets

Extracts from this document...

Introduction

Distribution of the weights of two types of sweets

The aim of this investigation is to collect data from a population and using the results estimate population parameters i.e. mean. To collect my data I am required to measure one factor of the chosen population, these factors include:

  • Heights
  • Weights
  • Pulse rates
  • Reaction times of males and females
  • Age group’s etc.

I have decided that my population will be two types of sweets and the factor that I am going to measure is the weights of each individual sweet. The two types of sweets I have decided to use are:

  • Galaxy Minstrels
  • Maltesers

When collecting my data I will have select an appropriate method to obtain the information that I require. There are two methods in which data can be collected:

  • Survey – used to determine some particular characteristic(s) of a population, usually

done through questionnaires.

  • Experiment – used to test a factor when that factor is the only variable.

The most suitable method to use to measure the weights of individual sweets is by doing an experiment.

It would be impossible to collect the weights of each sweet in the whole population a sample of the population must be taken.

...read more.

Middle

2.05

2.51

2.45

1.76

1.60

1.60

2.24

1.73

2.43

2.65

1.70

2.10

1.89

2.18

1.62

1.44

2.03

2.18

2.20

1.88

1.64

1.95

2.25

1.87

1.71

2.11

1.95

2.27

2.08

2.38

1.87

2.27

2.02

2.15

1.43

1.69

2.22

1.70

2.46

1.48

2.15

2.35

1.89

1.69

1.16

2.19

2.04

2.66

2.01

2.33

2.09

2.31

2.27

1.86

2.23

1.89

1.97

2.76

2.04

2.14

2.33

2.15

1.73

1.34

1.67

1.74

1.92

1.76

2.41

2.13

1.49

1.80

1.96

1.91

2.55

2.49

2.51

1.85

2.06

1.40

2.02

2.07

2.09

2.16

2.18

Mean, Variance and Standard deviation

Now that I have obtained all the weights of each individual sweet I will be able to calculate the mean, variance and standard deviation of the sample.

Mean (u)

The mean, u, is the sum of all the data values divided by the number of observations, it is a measure of the ‘average’ value of a set of data. The mean is equally influenced equally by all the data values. The formula for calculating the mean is:

u = ∑x

      n

I will calculate the mean of the Galaxy minstrel’s and Maltesers separately.

Galaxy Minstrels u =    ∑x    =   261.41  = 2.61g (2 d.p)

                              n                 100

Maltesers, u =   ∑x   =   202.32   = 2.02g (2 d.p)

                      n                 100

Variance

The variance, o  ², is calculated by taking the mean of the sum of the squared deviations from the mean. The formula to calculate variance is:

o  ² = ∑x ²  - x ²

  n

I will once again calculate the variance of the Galaxy minstrels and Maltesers separately.

Galaxy Minstrels, o  ² = ∑x ²  - x ²  =  684.2055  - 2.61²

        n                  100

                                         = 6.842 – 6.812

 =0.03 (2 d.p)

Maltesers, o  ² = ∑x ²  - x ²  =  419.735  - 2.02²

       n                            100

                = 4.197 – 4.080

= 0.12 (2 d.p)

Standard Deviation

The standard deviation, o  , is the measure of spread around the mean. It is calculated using this formula:

o = /∑x ²  - x ²

  n

As you can see the standard deviation is simply the squared root of the variance:

√variance

As I have already calculated the variance it will be relatively easy to calculate the standard deviation (by square rooting the variance)

Galaxy Minstrels o  = √variance = √0.03

                                        = 0.17 (2 d.p)

Maltesers o  = √variance = √0.12

                                = 0.35 (2 d.p)

Now that I have calculated the mean, variance and standard deviations of the Galaxy minstrels and Maltesers I will be able to compare them to do this I will place the results in a table as it will be easier to look at the data:

Mean
Variance

Standard Deviation

Galaxy Minstrels

2.61

0.03

0.17

Maltesers

2.02

0.12

0.35

...read more.

Conclusion

                               = 2.61 – 1.645 * 0.017, 2.61 + 1.645 * 0.017

                               = 2.58, 2.64

This shows that there is a 90% confidence that the weight of a Galaxy minstrel weighs between 2.58g and 2.64g.

Maltesers:

90% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.02 – 1.645 * 0.035, 2.02 + 1.645 * 0.035

                               = 1.96g, 2.08g

This shows that there is a 90% confidence that the weight of a maltesers weighs between 1.96g and 2.08g.

Now I will calculate the 95% confidence intervals.

Galaxy Minstrels

95% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.61 – 1.96 * 0.017, 2.61 + 1.96 * 0.017

                               = 2.58, 2.64

This shows that there is a 95% confidence that the weight of a Galaxy minstrel weighs between 2.58g and 2.64g.

Maltesers:

90% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.02 – 1.96 * 0.035, 2.02 + 1.96 * 0.035

                               = 1.95g, 2.09g

This shows that there is a 95% confidence that the weight of a maltesers weighs between 1.95g and 2.09g.

Now I will calculated 99% confidence intervals

Galaxy Minstrels

99% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.61 – 2.575 * 0.017, 2.61 + 2.575 * 0.017

                               = 2.57, 2.65

This shows that there is a 99% confidence that the weight of a Galaxy minstrel weighs between 2.57g and 2.65g.

*****Maltesers:

70% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.02 – 0.525 * 0.035, 2.02 + 0.525 * 0.035

                               = 2.00g, 2.04g

This shows that there is a 70% confidence that the weight of a maltesers weighs between 2.00g and 2.04g.


Table

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Probability & Statistics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Probability & Statistics essays

  1. The normal distribution

    means the sum of all the squared differences (add them all up) n - 1 means the number of scores minus 1 The table below shows how to calculate the average and the standard deviation of a set of seven example scores in the first column.

  2. Design an investigation to see if there is a significant relationship between the number ...

    However, a line transect would avoid these gullies. Secondly, systematic sampling appealed to me above random sampling, due to the time restrictions imposed on me on the day of execution. The tide is known to move in very quickly due to the shelved nature of the bay, so I feel there would not be time to map out

  1. Estimating the length of a line and the size of an angle.

    If the student is injured and is in hospital then I would have to choose another student from the remaining students in the year and gender or if the students is suspended/excluded from school then again I would have to choose another student from that remaining list of the same year and gender.

  2. "The lengths of lines are easier to guess than angles. Also, that year 11's ...

    / (w) Mid-Point (x) (f) x (x) 20 ? � < 30 1 10 0.1 24.5 24.5 30 ? � < 35 3 5 0.6 32 96 35 ? � < 40 7 5 1.4 37 259 40 ? � < 45 7 5 1.4 42 294 45 ?

  1. An Investigation Into An Aspect Of Human Variation.

    Procedures One hundred people (fifty male and fifty female) were sampled in this investigation considering and controlling the variables as listed under 'Variables'. I have increased the number of people sampled from eighty, as stated in the design, to one hundred; a larger sample will give a better representation of

  2. The average pupil.

    Initially I shall start off with the year 7's. Girls = 131/282= 46.50% Boys = 151/282= 53.50% This table shows that there are 131 girls and 151 boys within the total of 282 of year 7 pupils. This means that I will have to use these percentages within my rather reduced sample of 50 children.

  1. My aim is that within the limits of a small-scale survey I will collect ...

    Limit Theorem to be in effect, which would provide a Normal distribution of its mean which will allow me to make predictions of the parent population. I have decided to collect my sample data in a group, in order to lower he costs of the investigation, and also to provide assistance with greater accuracy to collecting the sample.

  2. The aim of this experiment is to measure the BOD and DO of water.

    We water seal the sample bottles by covering the bottle cap with distilled water. We have to start the titration as soon as possible after sample collection. For sample analysis, we bring the sample to 200C. Then we add 1ml of a 30% MnSO4 solution followed by 1ml of 32% NaOH solution to the sample.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work