• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14

Distribution of the weights of two types of sweets

Extracts from this document...

Introduction

Distribution of the weights of two types of sweets

The aim of this investigation is to collect data from a population and using the results estimate population parameters i.e. mean. To collect my data I am required to measure one factor of the chosen population, these factors include:

  • Heights
  • Weights
  • Pulse rates
  • Reaction times of males and females
  • Age group’s etc.

I have decided that my population will be two types of sweets and the factor that I am going to measure is the weights of each individual sweet. The two types of sweets I have decided to use are:

  • Galaxy Minstrels
  • Maltesers

When collecting my data I will have select an appropriate method to obtain the information that I require. There are two methods in which data can be collected:

  • Survey – used to determine some particular characteristic(s) of a population, usually

done through questionnaires.

  • Experiment – used to test a factor when that factor is the only variable.

The most suitable method to use to measure the weights of individual sweets is by doing an experiment.

It would be impossible to collect the weights of each sweet in the whole population a sample of the population must be taken.

...read more.

Middle

2.05

2.51

2.45

1.76

1.60

1.60

2.24

1.73

2.43

2.65

1.70

2.10

1.89

2.18

1.62

1.44

2.03

2.18

2.20

1.88

1.64

1.95

2.25

1.87

1.71

2.11

1.95

2.27

2.08

2.38

1.87

2.27

2.02

2.15

1.43

1.69

2.22

1.70

2.46

1.48

2.15

2.35

1.89

1.69

1.16

2.19

2.04

2.66

2.01

2.33

2.09

2.31

2.27

1.86

2.23

1.89

1.97

2.76

2.04

2.14

2.33

2.15

1.73

1.34

1.67

1.74

1.92

1.76

2.41

2.13

1.49

1.80

1.96

1.91

2.55

2.49

2.51

1.85

2.06

1.40

2.02

2.07

2.09

2.16

2.18

Mean, Variance and Standard deviation

Now that I have obtained all the weights of each individual sweet I will be able to calculate the mean, variance and standard deviation of the sample.

Mean (u)

The mean, u, is the sum of all the data values divided by the number of observations, it is a measure of the ‘average’ value of a set of data. The mean is equally influenced equally by all the data values. The formula for calculating the mean is:

u = ∑x

      n

I will calculate the mean of the Galaxy minstrel’s and Maltesers separately.

Galaxy Minstrels u =    ∑x    =   261.41  = 2.61g (2 d.p)

                              n                 100

Maltesers, u =   ∑x   =   202.32   = 2.02g (2 d.p)

                      n                 100

Variance

The variance, o  ², is calculated by taking the mean of the sum of the squared deviations from the mean. The formula to calculate variance is:

o  ² = ∑x ²  - x ²

  n

I will once again calculate the variance of the Galaxy minstrels and Maltesers separately.

Galaxy Minstrels, o  ² = ∑x ²  - x ²  =  684.2055  - 2.61²

        n                  100

                                         = 6.842 – 6.812

 =0.03 (2 d.p)

Maltesers, o  ² = ∑x ²  - x ²  =  419.735  - 2.02²

       n                            100

                = 4.197 – 4.080

= 0.12 (2 d.p)

Standard Deviation

The standard deviation, o  , is the measure of spread around the mean. It is calculated using this formula:

o = /∑x ²  - x ²

  n

As you can see the standard deviation is simply the squared root of the variance:

√variance

As I have already calculated the variance it will be relatively easy to calculate the standard deviation (by square rooting the variance)

Galaxy Minstrels o  = √variance = √0.03

                                        = 0.17 (2 d.p)

Maltesers o  = √variance = √0.12

                                = 0.35 (2 d.p)

Now that I have calculated the mean, variance and standard deviations of the Galaxy minstrels and Maltesers I will be able to compare them to do this I will place the results in a table as it will be easier to look at the data:

Mean
Variance

Standard Deviation

Galaxy Minstrels

2.61

0.03

0.17

Maltesers

2.02

0.12

0.35

...read more.

Conclusion

                               = 2.61 – 1.645 * 0.017, 2.61 + 1.645 * 0.017

                               = 2.58, 2.64

This shows that there is a 90% confidence that the weight of a Galaxy minstrel weighs between 2.58g and 2.64g.

Maltesers:

90% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.02 – 1.645 * 0.035, 2.02 + 1.645 * 0.035

                               = 1.96g, 2.08g

This shows that there is a 90% confidence that the weight of a maltesers weighs between 1.96g and 2.08g.

Now I will calculate the 95% confidence intervals.

Galaxy Minstrels

95% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.61 – 1.96 * 0.017, 2.61 + 1.96 * 0.017

                               = 2.58, 2.64

This shows that there is a 95% confidence that the weight of a Galaxy minstrel weighs between 2.58g and 2.64g.

Maltesers:

90% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.02 – 1.96 * 0.035, 2.02 + 1.96 * 0.035

                               = 1.95g, 2.09g

This shows that there is a 95% confidence that the weight of a maltesers weighs between 1.95g and 2.09g.

Now I will calculated 99% confidence intervals

Galaxy Minstrels

99% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.61 – 2.575 * 0.017, 2.61 + 2.575 * 0.017

                               = 2.57, 2.65

This shows that there is a 99% confidence that the weight of a Galaxy minstrel weighs between 2.57g and 2.65g.

*****Maltesers:

70% confidence interval = (sample mean – N.D.V * s.e, sample mean + N.D.V * s.e)

                               = 2.02 – 0.525 * 0.035, 2.02 + 0.525 * 0.035

                               = 2.00g, 2.04g

This shows that there is a 70% confidence that the weight of a maltesers weighs between 2.00g and 2.04g.


Table

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Probability & Statistics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Probability & Statistics essays

  1. Used Cars - What main factor that affects the price of a second hand ...

    0 11499 21 MEDIUM 1700 49260 5 6999 22 MEDIUM 1700 22070 2 5999 23 MEDIUM 1799 36534 5 6999 24 MEDIUM 1800 18620 2 9199 25 MEDIUM 1800 17200 3 9999 26 MEDIUM 1800 49589 4 5499 27 MEDIUM 1800 4940 1 17399 28 MEDIUM 1800 2920 0 14899

  2. Design an investigation to see if there is a significant relationship between the number ...

    Seaweeds are not like plants - they do not have roots and therefore need to take up nutrients via uptake sites on their fronds. They can only take up nutrients when they are submerged in the water. This is a factor that should be considered during my investigation, as seaweed

  1. Estimating the length of a line and the size of an angle.

    This is table that shows the number of boys and girls in both year 10 and 11. Male Female Total Year 10 172 74 246 Year 11 145 82 287 To choose the sample fairly I have a list of all the students in each year with their date of birth, gender and origin, which I received from my teacher.

  2. find out if there is a connection between people's IQ and their average KS2 ...

    made, I swapped my two outliers with two pieces of data that fitted better with the other pieces of data. I randomly chose my bits of data with a calculator. I will continue using my new sample for the rest of my coursework.

  1. I want to find out if there is a connection between people's IQ and ...

    made, I swapped my two outliers with two pieces of data that fitted better with the other pieces of data. I randomly chose my bits of data with a calculator. I will continue using my new sample for the rest of my coursework.

  2. Collect data from a population with a view to estimating population parameters.

    is equal to the population value it is estimating. The sample mean is an unbiased estimator of the population mean. Confidence Intervals relate to an expression of the degree of confidence in your estimate in a more precise way than simple stating the standard error of the mean and size of the population.

  1. "The lengths of lines are easier to guess than angles. Also, that year 11's ...

    These are the median class intervals: Angle Year 9: <45 class interval. I found this by finding the middle of the total frequency and finding which interval that would be in. Year 11: <45 class interval again. This shows the median of both results is in the same class interval.

  2. The normal distribution

    means the sum of all the squared differences (add them all up) n - 1 means the number of scores minus 1 The table below shows how to calculate the average and the standard deviation of a set of seven example scores in the first column.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work