• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14

Finding the root of an equation

Extracts from this document...

Introduction

Finding the root

Change of sign method

image00.png

This is the graph of the equation y=3x3+4x2-3x-1. The change of sign method will be used to find out the value of the root in this graph which lies between -1 and 0. The change of sign method requires finding out where a change of sign occurs in the y-co-ordinate and establish where, within the gap found out, the next change of sign will occur. This will result in a narrowing down of the group of values the root could lie between which will result in an answer of a satisfactory degree of accuracy.

The first part of the investigation involves finding out where, between -1 and 3, a change of sign occurs.

X

Y

-1

3

-0.9

2.753

-0.8

2.424

-0.7

2.031

-0.6

1.592

-0.5

1.125

-0.4

0.648

-0.3

0.179

-0.2

-0.264

-0.1

-0.663

0

-1

        There is a change of sign and therefore a root in the region between -0.3 and -0.2.

image01.png

        The next part of the investigation is to find out where a change of sign occurs between -0.3 and -0.2.

X

Y

-0.3

0.179

-0.29

0.133233

-0.28

0.087744

-0.27

0.042551

-0.26

-0.00233

-0.25

-0.04688

-0.24

-0.09107

-0.23

-0.1349

-0.22

-0.17834

-0.21

-0.22138

-0.2

-0.264

...read more.

Middle

0.002145

-0.26

-0.00233

        There is a change of sign and therefore a root in the region between -0.261 and -0.260.

image13.png

        The next part is to establish where, between -0.261 and -0.26, a change of sign occurs.

X

Y

-0.261

0.0021453

-0.2609

0.0016978

-0.2608

0.0012503

-0.2607

0.0008029

-0.2606

0.0003556

-0.2605

-0.0000918

-0.2604

-0.0005391

-0.2603

-0.0009864

-0.2602

-0.0014336

-0.2601

-0.0018808

-0.26

-0.0023280

        There is a change of sign and therefore a root in the region between -0.2606 and -0.2605.

image14.png

        The next part of the investigation is establishing where, between -0.2606 and -0.2605, a change of sign occurs.

X

Y

0.2606

0.000355557

-0.26059

0.000310821

-0.26058

0.000266086

-0.26057

0.000221351

-0.26056

0.000176616

-0.26055

0.000131882

-0.26054

0.000087148

-0.26053

0.000042414

-0.26052

-0.000002319558

-0.26051

-0.000047053

-0.2605

-0.000091785

        There is a change of sign and therefore a root between -0.26053 and -0.26052.

image15.png

        As shown visibly, and as can be proved mathematically, the root of the equation which lies between -1 and 0 is closer to -0.26052 than it is to -0.26053. Therefore, the root of the equation which lies between -1 and 0 is -0.26052 to 5 significant figures.

        Because of the nature of the answer when given to five significant figures, the amount of error is +0.000005. This makes the percentage error of the answer is 0.

...read more.

Conclusion

image07.pngimage08.png

        This shows the process of Newton-Rapshon iterations aiming to find out the value of the root between -1 and 0 which lies closer to zero. The starting value chosen in this case in 0. This has resulted in a value of -0.22708 to 5.s.f. being obtained for the root.

        The other root lies between 1 and 2.

image09.pngimage10.png

        The starting value for this root was 2. This root has been found to be 1.7368 to 5.s.f.

        However, there are occasions where finding the root using the Newton-Rapshon method doesn’t always work.

image11.png

        This is the graph y=2x3+2x2-2x-1. If the root between -2 and -1 was under investigation and the starting value of -1 was used, the gradient of the tangent at this point is zero. Therefore, no tangent can be drawn from this point to intercept the x-axis because the tangent at this point is horizontal.

        y=2x3+2x2-2x-1; When y=-1, x=1

        dy/dx=6x2+4x-2; When x=-1, dy/dx=6-4-2=0

        y=mx+c; y=-1, m=0, x=1, c=?

        y-mx=c; -1-0=-1 Therefore, equation of tangent is y=-1

        When y=0, y cannot =0. Therefore the Newton-Rapshon method cannot be applied here.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    The Gradient Function

    5 star(s)

    hx(x+h) hx(x+h) x(x+0)* x2 *h tends to 0. Voila, this gradient function is in accordance with nx n-1. By getting this far, I have nearly convinced myself that all values work, whether they are integers or not, or positive or not.

  2. Sequences and series investigation

    - 2(42) + 2Y(4) - 1 = 855 - 32 + 10Y - 1 = 63 The formula again proves to be successful. Using the formula to find the number of squares in a higher sequuence not yet explored in this investigation. Sequence 10: N = 10 _(10�) - 2(102) + 2Y(10)

  1. Triminoes Investigation

    8a + 4b + 2c + d = 10 - equation 2 - a + b + c + d = 4 - equation 1 7a + 3b + c = 6 - equation 7 Equation 5 - Equation 6 I am doing this to eliminate c from the two equations, to make an equation.

  2. Change of Sign Method.

    As before, the Fixed Point Iteration method will be applied. My chosen starting value, x0, will be 2. The following table was constructed using a Microsoft Excel spreadsheet with the formulae displayed: The values that were obtained are as

  1. Investigation of circumference ratio - finding the value of pi.

    Segment AC and Segment BC are radius r of circle. Angle ACD dependent by the n, n decide how many equilateral triangle in circle. So we use n to divide 360 degree (the degree of central angle degree), then we will got the degree of angle ACD.

  2. The Gradient Fraction

    'y=4x+1' solved by the 'Triangle Method' I will now go on further with straight line graphs. The graph below is a graph of 'y=4x+1'. By looking at the equation, it tells me that the straight line will cross through the +1 in the y axis.

  1. Mathematical Investigation

    Thus the period of the function y=sin (2x) is 1/2 of the original function y=sin(x). Varying values of "b" changes the frequency of the function changes as well. Frequency is the # of waves that fit in a fixed period.

  2. Three ways of reading The Bloody Chamber.

    year old women to be sceptical about the intentions of sexually experienced men old enough to be their fathers. Their intentions are probably not centred around companionate marriage and romantic love. This is a perfectly legitimate way in which to read the story, as a warning.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work