• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

In this coursework, I am going to solve equations by using the Numerical Methods. Numerical methods are used to solve equation that cannot be solved algebraically

Extracts from this document...



Pure mathematic 2 coursework


In this coursework, I am going to solve equations by using the Numerical Methods. Numerical methods are used to solve equation that cannot be solved algebraically e.g. quadratic equations ax²+bx+c=0 can be solved using this formula:

x= -b± √ b² - 4ac


Therefore numerical methods would not be used for quadratic equations. I will be working with equation which don’t have a formula to solve it. There are three methods, which I will be using:

· Change of sign method

· Newton-Raphson method

· Rearranging f(x) = 0 in the form x = g(x)


Our object is to investigate the solution of equations using the three different methods.  To solve an equation we must find all its roots; a method which misses one or more roots will fail to solve the equation.

Change of sign method:

There are three ways in which we can do this method which are:

  • Decimal searcher
  • Interval bisection
  • Linear interpolation


This method works when a function crosses the x-axis. If we are looking for the root of the equation f(x) = 0. The point at which the curve crosses x-axis is the root. Once an interval where f(x) changes sign then the root must be in the interval.                                      

...read more.



















From this we know that the root lie between -1.51 and -1.50, so now we will zoom between -1.51 and -1.50 to see where the root lies. The table below shows calculation for 3 decimal place.



































Now we can state that the root lies between -1.502 and -1.501, the calculation now would be from

-1.502 to -1.501. The table below shows value for x to 4 decimal place.  





























From the table above we can state that the root lie between {-1.5018 <x< -1.5017}, now we can do more calculation and get even more precise answer but we don’t know what is the precise accurate answer, the answer may be to 5 or even 10 decimal places. So it can take along time to find an accurate answer.

Root lies {-1.5018,-1.5017}

We can express this information as:

  • The root can be taken as -1.50175 with a maximum error of  +/-0.00005image13.png
  • The root can be -1.50 to (2 decimal place)

Error bounds:

...read more.


When decimal search method works:


I will try solving: F(x) =

The reason why I choose this equation is because I need to prove that this method work and not only it has only few roots but it is very easy to differentiate this function. Figure 4 shows the graph of the function above. Figure 5 shows zoom in version of the graph.


Figure 4


Figure 5

As you can see there are three roots in this graph, they are in the interval, [-3,-2],

[-1, 0], [2, 3]

The gradient for the tangent to the curve at (x1, f(x1)) is f’(x1) (meaning dy/dx for x). The equation of the tangent is: y-y1 = m(x-x1). Therefore y-f(x1) = f’(x1) [x-x1]. This tangent passes through the point (x2, 0). Carrying on with this process, this will get closer and closer to the tangent. But there is a general formula for this process:

xn+1 = xn – {f(Xn)/f ’(Xn)}


Differentiating the function:

dy/dx = f’(x) = [1/7]*7 x7-1- [5*3]x3-1 + [5*2]x2-1- 5*0

               = x6-15x2+10x

So now, using the Newton-Raphson iteration equation we can find the roots

Root A= interval [-1, 0]

Root B= interval [-3, -2]

Root C= interval [2, 3]

Root A


Figure 6

Figure 6 shows the curve with a tangent, so xn=-1

figure 7 shows zoom-in version of figure 6.  

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    C3 Coursework - different methods of solving equations.

    5 star(s)

    After 19 iterations, I found the root of the equation as from then on, it repeats. So the root of the equation x=G(x) against y = x graph. Failure of Rearrangement method There are situations where this method doesn't work.

  2. Marked by a teacher

    The Gradient Function

    5 star(s)

    4 128 4.01 128.962402 96.4806 4 128 4.001 128.096024 96.04801 3 54 3.1 59.582 57.66 3 54 3.01 54.541802 54.3606 3 54 3.001 54.054018 54.03601 2 16 2.1 18.522 26.46 2 16 2.01 16.241202 24.2406 2 16 2.001 16.024012 24.02401 1 2 1.1 2.662 7.26 1 2 1.01 2.060602 6.1206

  1. OCR MEI C3 Coursework - Numerical Methods

    is therefore a root of f(x)=0. Speed of convergence This shows that Newton-Raphson converges the quickest. In this case fixed point iteration using x=g(x) was the next fastest method, though in some cases its rate of convergence can be very slow: e.g., using the rearrangement x=(4x-3)1/5, it takes 19 iterations to find the root 1.002 of f(x)=0 to three decimal places.

  2. Investigate the solution of equations, comparing the following methods, Systematic search for change of ...

    Comparison of Methods I will now compare how the three methods manage to find the same root, the speed of convergence to find that root and how easy each method is to implicate with the software and hardware present.

  1. Best shape for gutter and further alegbra - using Excel to solve some mathematical ...

    This is a lot quicker in excel compared to using pen, paper and calculator. It also allows the recording of all calculations. A spreadsheet is instantly responsive to changed input values which enables exploration of the effect of variables within a process (Mathematical Association, 2002, p39)

  2. Numerical integration can be described as set of algorithms for calculating the numerical value ...

    If the number of rectangles is doubled M2n the height of each is halved (h/2). According to www.enm.bris.ac.uk the absolute error is proportional to h2. Absolute error ? h2 Absolute error = kh2 As a result in the first situation where Mn rectangles are used each of height h, the error is Mn= kh2.

  1. Solving Equations Using Numerical Methods

    Here is the table of results. I can now see that the root lies between -1.526 and -1.525. As I only intend to find the root to 3 decimal places I don't need to continue the method. To be certain that the root is between -1.526 and -1.525, I will calculate f(x)

  2. C3 COURSEWORK - comparing methods of solving functions

    Failure Case Example: y= (0.5x³+1.5x²–x–0.25) 1/3 Reason cause to failure is that the graph crosses the x axis with a very steep gradient Graph is y=f(x) The steep crossing points were caused by the power 1/3 On the graph, the Newton Raphson method will fail to reach a root y= (0.5x³+1.5x²–x–0.25)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work