• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

In this coursework, I am going to solve equations by using the Numerical Methods. Numerical methods are used to solve equation that cannot be solved algebraically

Extracts from this document...

Introduction

ﻔﻩﺩ

Pure mathematic 2 coursework

Introduction:

In this coursework, I am going to solve equations by using the Numerical Methods. Numerical methods are used to solve equation that cannot be solved algebraically e.g. quadratic equations ax²+bx+c=0 can be solved using this formula:

x= -b± √ b² - 4ac

2a

Therefore numerical methods would not be used for quadratic equations. I will be working with equation which don’t have a formula to solve it. There are three methods, which I will be using:

· Change of sign method

· Newton-Raphson method

· Rearranging f(x) = 0 in the form x = g(x)

Objective:

Our object is to investigate the solution of equations using the three different methods.  To solve an equation we must find all its roots; a method which misses one or more roots will fail to solve the equation.

Change of sign method:

There are three ways in which we can do this method which are:

  • Decimal searcher
  • Interval bisection
  • Linear interpolation

Description:

This method works when a function crosses the x-axis. If we are looking for the root of the equation f(x) = 0. The point at which the curve crosses x-axis is the root. Once an interval where f(x) changes sign then the root must be in the interval.                                      

...read more.

Middle

-1.009

-0.738

-0.472

-0.211

0.0437

sign

-

-

-

-

-

-

-

-

-

+

image20.png

From this we know that the root lie between -1.51 and -1.50, so now we will zoom between -1.51 and -1.50 to see where the root lies. The table below shows calculation for 3 decimal place.

F(x)

-1.509

-1.508

-1.507

-1.506

-1.505

-1.504

-1.503

-1.502

-1.501

-1.500

y

-0.1861

-0.1603

-0.1347

-0.109

-0.0834

-0.0579

-0.0324

-0.007

0.01841

0.04375

sign

-

-

-

-

-

-

-

-

+

+

image20.png

Now we can state that the root lies between -1.502 and -1.501, the calculation now would be from

-1.502 to -1.501. The table below shows value for x to 4 decimal place.  

F(x)

-1.5020

-1.5019

-1.5018

-1.5017

-1.5016

-1.5015

-1.5014

-1.5013

y

-0.007

-0.0044

-0.0019

0.00065

0.00319

0.00573

0.00826

0.0108

sign

-

-

-

+

+

+

+

+

image20.png

From the table above we can state that the root lie between {-1.5018 <x< -1.5017}, now we can do more calculation and get even more precise answer but we don’t know what is the precise accurate answer, the answer may be to 5 or even 10 decimal places. So it can take along time to find an accurate answer.

Root lies {-1.5018,-1.5017}

We can express this information as:

  • The root can be taken as -1.50175 with a maximum error of  +/-0.00005image13.png
  • The root can be -1.50 to (2 decimal place)

Error bounds:

...read more.

Conclusion

When decimal search method works:

image04.png

I will try solving: F(x) =

The reason why I choose this equation is because I need to prove that this method work and not only it has only few roots but it is very easy to differentiate this function. Figure 4 shows the graph of the function above. Figure 5 shows zoom in version of the graph.

image25.pngimage11.pngimage06.pngimage07.pngimage05.pngimage09.pngimage08.png

Figure 4

image21.png

Figure 5

As you can see there are three roots in this graph, they are in the interval, [-3,-2],

[-1, 0], [2, 3]

The gradient for the tangent to the curve at (x1, f(x1)) is f’(x1) (meaning dy/dx for x). The equation of the tangent is: y-y1 = m(x-x1). Therefore y-f(x1) = f’(x1) [x-x1]. This tangent passes through the point (x2, 0). Carrying on with this process, this will get closer and closer to the tangent. But there is a general formula for this process:

xn+1 = xn – {f(Xn)/f ’(Xn)}

image04.png

Differentiating the function:

dy/dx = f’(x) = [1/7]*7 x7-1- [5*3]x3-1 + [5*2]x2-1- 5*0

               = x6-15x2+10x

So now, using the Newton-Raphson iteration equation we can find the roots

Root A= interval [-1, 0]

Root B= interval [-3, -2]

Root C= interval [2, 3]

Root A

image22.pngimage12.png

Figure 6

Figure 6 shows the curve with a tangent, so xn=-1

figure 7 shows zoom-in version of figure 6.  

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    C3 Coursework - different methods of solving equations.

    5 star(s)

    After 19 iterations, I found the root of the equation as from then on, it repeats. So the root of the equation x=G(x) against y = x graph. Failure of Rearrangement method There are situations where this method doesn't work.

  2. Marked by a teacher

    The Gradient Function

    5 star(s)

    +4x = 4x Therefore the gradient function is correct. Now, I will change the value of n by 1 to see whether the same rule applies with different values of "a" and n. y = 2x3 x y second value x second value y gradient 4 128 4.1 137.842 100.86

  1. MEI numerical Methods

    Fixed point iteration: An approximation of the root can be calculated via this method. An equation can have more than one root, in order to find both roots we have to rearrange the equation so it equals x and use fixed point iteration for both equations.

  2. Pure 2 coursework - Decimal Search Method

    1 7 1.1 5.632 1.2 4.136 1.3 2.524 1.4 0.808 1.5 -1 1.6 -2.888 1.7 -4.844 1.8 -6.856 1.9 -8.912 2 -11 The root is in the interval [1.4, 1.5] x f(x) 1.4 0.808 1.41 0.631142 1.42 0.453376 1.43 0.274714 1.44 0.095168 1.45 -0.08525 1.46 -0.26653 1.47 -0.44865 1.48 -0.63162

  1. Best shape for gutter and further alegbra - using Excel to solve some mathematical ...

    This is a lot quicker in excel compared to using pen, paper and calculator. It also allows the recording of all calculations. A spreadsheet is instantly responsive to changed input values which enables exploration of the effect of variables within a process (Mathematical Association, 2002, p39)

  2. C3 Coursework: Numerical Methods

    The able shows that there is change of sign from 0.752 to 0.753. This means that the root of the equation must lie between 0.752 and 0.753. Our estimate of the root is with a maximum error of � 0.0005.

  1. Change of sign method --- interval bisection method

    using the rearranging f(x)=0 in the form x=g(x) method; for this method, I am going to rearrange f(x) = x3-12x2+44x-47=0 in the form x=(-x3+12x2+47)/44, i.e. g(x)= (-x3+12x2+47)/44 draw y=x and y=g(x)= (-x3+12x2+47)/44 on the same graph, I get the following: using the iteration xn+1=g(xn), doing on the spreadsheet with a

  2. Numerical solution of equations, Interval bisection---change of sign methods, Fixed point iteration ---the Newton-Raphson ...

    (x-1) (x+4) - 4, which can be expressed as f(x) = x�-13x+8=0 From the graph shown above, the intervals lie in the [-4,-3], [0, 1], [3, 4] Graph 3.1 For example, f(x) = 0 can be arranged into: A. B. Here the b)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work