• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17

Investigate the relationships between the lengths of the 3 sides of the right angled triangles and the perimeters and areas of these triangles.

Extracts from this document...

Introduction

Kamran Ali 10.1                GCSE Maths Coursework

Aim: To investigate the relationships between the lengths of the 3 sides of the right angled triangles and the perimeters and areas of these triangles.

Task 1:

a)

The numbers 5, 12, 13 satisfy the condition.

              5² + 12² = 13²

Because 5² = 5x5 = 25

              12² = 12x12 = 144

              13² = 13x13 = 169

And so

             5² + 12² = 25 + 144 = 169 = 132

b)

The Numbers 7, 24, 25 also satisfy the condition.

               7² + 24² =25²

Because  7² = 7x7 = 49

               24² = 24x24 = 576

               25² = 25x25 = 525

And so

             7² + 24² = 49+ 576 = 625 = 25²

Task2: The perimeter and area of the triangle are:

a)image00.png

image16.pngimage05.pngimage07.png

b)

image17.pngimage15.pngimage14.pngimage11.pngimage13.png

Length of shortest side

Length of middle side

Length of longest side

Perimeter

Area

3

4

5

12

6

5

12

13

30

30

7

24

25

84

84

Task3:

Length of short side is going to be in fixed steps meaning that this is a linear sequence and the length of middle side and longest side is actually a quadratic sequence because they are not in fixed steps and in geometric sequence.

4     , 12     , 24     , 40

image01.pngimage06.pngimage01.pngimage01.pngimage02.pngimage02.png

8     , 12     , 16image03.pngimage04.pngimage03.png

4     , 4

5     , 13     , 25     , 41    

image01.pngimage06.pngimage02.pngimage02.pngimage02.pngimage01.png

8     , 12     , 16     image04.png

  1. , 4image08.png

Length of shortest side:

Term no

1

2

3

4

5

Sequence

3

5

7

9

11

Sequence 2n

1

4

6

8

10

Sequence

1

1

1

1

1

...read more.

Middle

I am doing this to eliminate C from these equations

   9a + 3b + c = 24 –eqn3

-  4a + 2b + c = 12 –eqn2

image09.png

 5a + b          = 12 –eqn4

Equation 2 – Equation 1

I am doing this to eliminate C and form a fifth equation that I will subtract with equation 4.

   4a + 2b + c = 12 –eqn2

-  a + b + c = 4 –eqn1

image09.png

 3a + b          = 8 –eqn5

Equation 4 – Equation 5

 I am doing this to eliminate B and finally work out what A is worth.

   5a + b = 12 –eqn4

-  3a + b = 8 –eqn5

image09.png

 2a          = 4

A = 4/2

A = 2

Substitute A =2 into equation 5

I am doing this to find what B is worth.

3a + b = 8

3 x 2 + b = 8

6 + b = 8

B = - 6

B = 2

Substitute A =2 and B = 2 into equation 1.

I am doing this to find what C is worth.

A + B + C = 4

2 + 2 + C = 4

4 + C       = 4

C = 0

F (n) = an² + bn + c

F (n) = 2n² + 2n

Try n = 1

F (1) = 2 x 1² + 2 x 1

         = 2 + 2

         = 4

Try n = 2

F (2) = 2 x 2² + 2 x 2

         = 8 + 4

         = 12

Try n = 100

F (100) = 2 x 100² + 2 x 100

         = 10000 + 200

         = 20200

Length of longest side:

F (n) = an² + bn +c

F= (1) = a x 1² + b x 1 + c

  = a + b + c = 5 – eqn1

F= (2)

...read more.

Conclusion

-  a + b + c + d = 6 –eqn1

image09.png

 7a + 3b + c      = 24- eqn7

Equation 6 – Equation 7

I am doing this to eliminate C.

19a + 5b + c = 54 –eqn6

-  7a + 3b + c = 24- eqn7

image09.png

 12a + 2b       = 30- eqn8

Equation 5 – Equation 6

I am doing this to eliminate C.

    37a + 7b + c = 96 –eqn5

-  19a + 5b + c = 54 –eqn6

image09.png

 18a + 2b       = 42- eqn9

Equation 9 – Equation 8

I am doing this to eliminate B and to find the value of A is worth.

     18a + 2b       = 42- eqn9

-    12a + 2b       = 30- eqn8

image09.png

 6a                      = 12

A = 12/6

A = 2

Substitute A = 2 into equation 9.

I am doing this to find what B is worth.

12a + 26 = 30

12 x 2 + 2b = 30

24 + 2b = 30

2b = 30 – 24

2b = 6

b = 6/2

B=3

Substitute A = 2 and B = 3 into equation 6.

I am doing this to find what C is worth.

19a + 5b + c = 54

19 x 2 + 5 x 3 + c = 54

38 + 15 + c = 54

53 + 15 + c = 54

c = 54 – 53

C = 1

Substitute A = 2 and B = 3 and C = 1 into equation 1.

I am doing this to find what D is worth.

A + B + C + D = 6

2 + 3 + 1 + D = 6

6 + D = 6

D = 6 – 6

D = 0

F (n) = a³ + bn² + cn + d  

F (n) = 2n³ + 3n² + n

Try n = 1

F (1) = 2 x 1³ + 3 x 1² + 1 x 1

         = 2 + 3 + 1

         = 6

Try n = 2

F (2) = 2 x 2³ + 3 x 2² + 1 x 2

         = 16 + 12 + 2

         = 30

By:

        Kamran Ali 10.1

Kamran Ali 10.1                GCSE Maths Coursework

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Arctic Research (Maths Coursework)

    = distance (d) / time (t) to find the time it would take, ignoring the wind, for one journey. If we multiply this result by 16 it will give us a fair idea of time it should take for all the 16 flights.

  2. Maths - Investigate how many people can be carried in each type of vessel.

    ] A X = B Let the three matrices be named "A,' 'X' and 'B' as labelled above. In order to find out x, y and z. We have to firstly rearrange the equation for "X". Since laws of matrices state that AB is not equal to BA, we must

  1. 2D and 3D Sequences Project

    128 - 15 5. = 113 Successful The formula I found seems to be successful as I have shown on the previous page. I will now use the formula to find the number of squares in a higher sequence. So now I wil use the formula 2n<sup>2</sup> - 2n + 1 to try and find the number of squares contained in sequence 20.

  2. Functions Coursework - A2 Maths

    x=1.9 to 1 decimal place This process can be repeated as many times to get the root to a desired number of decimal places. To illustrate the fact that the root lies in the interval [1.8,1.9], part of the graph of y=f(x)

  1. Mathematics Coursework - OCR A Level

    One then looks for where this new formula (y=g(x)) crosses the line of y=x as it will cross at the same points as where the original formula crosses the x-axis thus giving me the roots of the original equation. Original equation I found an equation, the graph of which is shown below, and rearranged into from the form f(x)=0 to x=g(x).

  2. Solutions of equations

    Answer: 0.66667 (5 d.p.) Error: 0.66667 + 0.000005 Error Bounds: [0.666665,0.666675] For these error bounds to be valid there must be a change of sign when the values are input into the equation: f(x) = 243x3-378x2+192x-32 f(0.666665) = -0.00002 f(0.666675) = 0.00001 There is a change of sign in the two answers so I can say the error bounds are valid.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work