• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the Quadratic Function.

Extracts from this document...

Introduction

Investigating the Quadratic Function

Type 1

Dan Plant

Mr. Maly

11 IB Mathematics

Thursday, May 10, 2007

Investigating the Quadratic Function Type 1

  1. Based on three resulting graphs, it can be determined that they are in fact all the same shape, of a parabola, however have varied locations. Furthermore, the locations of the graphs are specifically translated positively or negatively vertical according to the constant added or subtracted to the variable (x2). These three graphs may be generalized by the following statement; adding a positive or negative constant h will shift the graph vertically h units in the function y = (x2)+h. (Refer to attached graphs)
  2. Based on the three resulting graphs, it can be determined that they are in fact all the same shape, of a parabola, however they have varied locations. Furthermore, the locations of the graphs are specifically translated
...read more.

Middle

 with the addition of the constant g to provide the expression in the form of (x – h)2 +g. The following is the method required to obtain the desired form of the expression: x2 – 10x + 32 = x2 – 10x + (25 + 7) = (x2 – 10x + 25) + 7 = (x-5)2 + 7. Thus x2 – 10x + 32 = (x-5)2 + 7.

(c)  (i) x2 – 18x + 77 (ii) x2 – 14x + 57 (iii) x2 + 12x + 36 (iv) x2 –5x + 8.5

(i) x2 – 18x + 77 x2 – 18x + (81 – 4)  (x2 – 18x + 81) – 4 (x – 9)2 - 4

(ii)  x2 – 14x + 57 x2 – 14x + (49 + 8)  (x2 – 14x + 49) + 8 (x – 7)2 + 8

(iii) x2 + 12x + 36(x + 4)2

(iv) The middle term of the following expression, x2 – 7x + 14.5, determines the constant h of (x – h)2. Therefore, h will equal 7/2. The resultant of (x – h)2, (x - 7/2)2, is x2 – 7x + 12.25. In order to achieve an expression equal to the original, it is required to add 2.25 in the place of the constant g. With the addition of the necessary 2.25, equalizing it to the original expression in the x2

...read more.

Conclusion

y = x2, but translated horizontally h units and vertically g units. Fundamentally, if f(x) = y, then f(x) + g = y + g, translating y in accordance with g. The entire premise on which this is built relies within the statement that the position of the y value is based entirely on that of x, while the position of the x value is based entirely on that of y.The findings drawn from this investigation apply not only to these graphs; they may be employed in other circumstances as well. Other graphs that could employ these findings may be polynomial, trigonometric, exponential, and any graph where the x and y vales are based on each other. Generalizing, incorporating a constant k into any function f(x) will translate the function f(x) vertically k units. Replacing x in the function f(x) with the expression (x-h), h will translate any function f(x) horizontally h units.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    The Gradient Function

    5 star(s)

    1.414301942 0.125172 2 1.189207 2.1 1.203801344 0.175152 2 1.189207 2.01 1.190690845 0.178385 2 1.189207 2.001 1.189355738 0.178718 1 1 1.1 1.024113689 0.241137 1 1 1.01 1.002490679 0.249068 1 1 1.001 1.000249906 0.249906 x X 0.25 Gradient 1 1 0.25 2 1.414214 0.148651 3 1.732051 0.109673 4 2 0.088388 Like before,

  2. Marked by a teacher

    Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    3 star(s)

    Have look the results from the same tests (table 3). For this equation, R^2 is 0.994231, which is very close to the unity, i.e. the equation as a representation of reality. However, the number represent the result of F-test is 8789, which is much smaller than the result showed in the second equation.

  1. Estimate a consumption function for the UK economy explaining the statistical techniques you have ...

    Real interest rate can influence autonomous consumption. Normally the lower the real interest rate the greater is autonomous consumption. Before we can assume that MPC is 0.925, we need to decide whether the predicted equation is acceptable or not. To do this we can test whether the equation fits the actual data correctly.

  2. Numerical Method (Maths Investigation)

    However, the speed of using these methods is very important here. One of the factor that affect the speed of applying each different methods is THE USE OF COMPUTER. The Computer has many useful programs that help me to finish my coursework, such as Microsoft Excel, Microsoft Word and a

  1. Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    This means that if a person was calculating their consumption for period t they would use all the information available to them up until that time. However this can be broken down into areas; information available at time t-1 and "new" information that came available between t-1 and t.

  2. Growing Squares

    8 2 7 18 3 25 20 38 8 4 63 66 5 129 28 The 3rd difference is constant; therefore the equations will be cubic. The coefficient of n3 is 1/6 of the 3rd difference. I will now attempt to find the extra bit for this formula.

  1. Investigation into combined transoformations of 6 trigonometric functions

    and a minimum at (-0.25?,-2) Results Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 As you can see from all the results my predictions were correct. The second transformation combination I will be investigating will be ac the combinations of stretching in the y-direction and translating in the x-direction, this time I'll be

  2. Investigation of the Phi Function

    1, 5, 7, 11, 13, 17, 19 and 23, which are not divisible by 2 or 3, so all of them are co-prime with 24. b) i ?(18) = {1, 5, 7, 11, 13, 17} = 6 ii ?(41) = 40, because it is a prime number, so it has

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work