• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating the Quadratic Function.

Extracts from this document...

Introduction

Investigating the Quadratic Function

Type 1

Dan Plant

Mr. Maly

11 IB Mathematics

Thursday, May 10, 2007

Investigating the Quadratic Function Type 1

  1. Based on three resulting graphs, it can be determined that they are in fact all the same shape, of a parabola, however have varied locations. Furthermore, the locations of the graphs are specifically translated positively or negatively vertical according to the constant added or subtracted to the variable (x2). These three graphs may be generalized by the following statement; adding a positive or negative constant h will shift the graph vertically h units in the function y = (x2)+h. (Refer to attached graphs)
  2. Based on the three resulting graphs, it can be determined that they are in fact all the same shape, of a parabola, however they have varied locations. Furthermore, the locations of the graphs are specifically translated
...read more.

Middle

 with the addition of the constant g to provide the expression in the form of (x – h)2 +g. The following is the method required to obtain the desired form of the expression: x2 – 10x + 32 = x2 – 10x + (25 + 7) = (x2 – 10x + 25) + 7 = (x-5)2 + 7. Thus x2 – 10x + 32 = (x-5)2 + 7.

(c)  (i) x2 – 18x + 77 (ii) x2 – 14x + 57 (iii) x2 + 12x + 36 (iv) x2 –5x + 8.5

(i) x2 – 18x + 77 x2 – 18x + (81 – 4)  (x2 – 18x + 81) – 4 (x – 9)2 - 4

(ii)  x2 – 14x + 57 x2 – 14x + (49 + 8)  (x2 – 14x + 49) + 8 (x – 7)2 + 8

(iii) x2 + 12x + 36(x + 4)2

(iv) The middle term of the following expression, x2 – 7x + 14.5, determines the constant h of (x – h)2. Therefore, h will equal 7/2. The resultant of (x – h)2, (x - 7/2)2, is x2 – 7x + 12.25. In order to achieve an expression equal to the original, it is required to add 2.25 in the place of the constant g. With the addition of the necessary 2.25, equalizing it to the original expression in the x2

...read more.

Conclusion

y = x2, but translated horizontally h units and vertically g units. Fundamentally, if f(x) = y, then f(x) + g = y + g, translating y in accordance with g. The entire premise on which this is built relies within the statement that the position of the y value is based entirely on that of x, while the position of the x value is based entirely on that of y.The findings drawn from this investigation apply not only to these graphs; they may be employed in other circumstances as well. Other graphs that could employ these findings may be polynomial, trigonometric, exponential, and any graph where the x and y vales are based on each other. Generalizing, incorporating a constant k into any function f(x) will translate the function f(x) vertically k units. Replacing x in the function f(x) with the expression (x-h), h will translate any function f(x) horizontally h units.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    The Gradient Function

    5 star(s)

    these data are very hard to work with and I cannot find a general pattern by looking at the gradients - they are not whole numbers. This will again, however, support the gradient function I will come up with using binomial expansion.

  2. Marked by a teacher

    Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    3 star(s)

    The absolute values of T-test are 5.37 and 93.8. They are quit small as well. In addition, DW displays the same result as the other tests, where 0.439 is smaller than 2. It is means that serial correlation. This can be shown in the Figure 3(b), the residuals in the

  1. Numerical Method (Maths Investigation)

    making sure that no errors is made or I will get the wrong answer. Using a calculator, for example, I might press in 1.51218 instead of 1.51213 and this will give me the wrong answer. I think that Rearrangement Method should be the fastest of all three without the aid

  2. Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    however as expected the c1 value is greater than one due to increasing levels of income over time, this could be for a number of reasons although inflation is an obvious one. Inflation is guaranteed to have an effect on consumption as it changes the value of money over each time frame.

  1. Estimate a consumption function for the UK economy explaining the statistical techniques you have ...

    Using linear regression I obtain the equation below: C = 13064.8 + 0.925Y The marginal propensity to consume is 0.925. This supported the Keynesian's view that the m.p.c is less than 1. The autonomous consumption is 13064.8. This is positive and very large. Real interest rate can influence autonomous consumption.

  2. Investigation into combined transoformations of 6 trigonometric functions

    and a minimum at (-0.25?,-2) Results Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 As you can see from all the results my predictions were correct. The second transformation combination I will be investigating will be ac the combinations of stretching in the y-direction and translating in the x-direction, this time I'll be

  1. Investigation of the Phi Function

    no factors other than one or itself and cannot have common factors. iii ?(7) = 6, again because it is a prime number and cannot share factors with any numbers smaller than it. iv ?(6) = {1, 5} = 2 v ?(25)

  2. Math Portfolio Type II - Applications of Sinusoidal Functions

    = 0.846 sin[0.015(n -127.798)] + 6.362. This is found through using the TI-84 Plus graphing calculator. All the coordinates are listed in a table and the equation is found using sinusoidal regression, which is done with the graphing calculator. 6.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work