• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigation of the Phi Function

Extracts from this document...

Introduction

The Phi Function

Introduction

Also known as the totient function, the phi function Φ(n) is the number of positive integers smaller than n that are co-prime with n, where n is any positive integer. The term co-prime refers to numbers which do not share any common factors. In this case, it means all the positive integers smaller than n which do not have any of the same factors as n.

The number 1 is said to be co-prime with all positive integers because it is a prime number and is only divisible by itself.

One thing that needs to be understood before I start, however, is that to find out Φ(n), we need to know the factors of n, so that we can check if any of the positive integers smaller than it are divisible by those factors. However, even these factors of n must be divisible by its prime factors and larger numbers may have many factors but only a few prime factors. For example, the prime factor of 8 is 2 and all the factors of 8 (not including 1) i.e. 2, 4, and 8 are divisible by the prime factor 2. This means that it is easier to calculate Φ(n) by checking how many numbers less than n are divisible by its prime factors than by its factors.

Part 1

  1. The value of Φ(3) is 2.
...read more.

Middle

1 x 2 =2

No

Table showing values of Φ(mn) when m=2

m

n

Φ(mn)

Φ(m) x Φ(n)

Does Φ(mn)= Φ(m) x Φ(n)

3

2

Φ(6) = 2

2 x 1 =2

Yes

3

3

Φ(9) = 6

2 x 2 =4

No

3

4

Φ(12) = 4

2 x 2 =4

Yes

3

5

Φ(15) = 8

2 x 4 =8

Yes

3

6

Φ(18) = 6

2 x 2 =4

No

Table showing values of Φ(mn) when m=2

m

n

1

2

1

3

1

4

1

5

1

6

2

3

2

5

3

2

3

4

3

5

M

n

2

2

2

4

2

6

3

3

3

6

Since, the tables above do not show any clear link or pattern between m and n, I have now made two tables comparing the values of m and n that do work for the equation Φ(mn) = Φ(m) x Φ(n) on the right, and the values that don’t on the left. Maybe this will help me spot a relationship between them.

At a first look, it seems that for all the values of m and n that do work, one number is even and the other odd. However, there are some exceptions, which show that this cannot be the case. For example, 1 and 3, 1 and 5, and 3 and 5 are all combinations of m and n which are both odd and yet they fulfil the equation Φ(mn) = Φ(m) x Φ(n).

Another possible relationship between m and n is that one cannot be a multiple of another. This is because all the values of n in the table on the right are divisible by m, while none of the values of n in the table on the left are divisible by m. However, when I carried out some further investigation to prove this theory, I found various larger combinations where n is not divisible by m, so according to my theory, they should fulfil the equation Φ(mn) = Φ(m) x Φ(n),but they do not. Some of them are listed below:

m

n

Φ(mn)

Φ(m) x Φ(n)

Does Φ(mn)= Φ(m) x Φ(n)

4

6

Φ(24) = 8

2 x 2 =4

No

6

8

Φ(48) =16

2 x 4 =8

No

6

9

Φ(54) = 18

2 x 6 =6

No

...read more.

Conclusion

 pk-1, as is shown here:  

image01.png

In other words, m=, pk-1where m represents the number of multiples of p less than pk.

We know that pk-1 gives us m, which is the number of multiples of p smaller than then pk, because it represents the number of lots of p in pk. For example, 33 can also be written 3x3x3 which is 32 (9) lots of 3, so in other words, in 33 there are 33-1 or 32 multiples of 3.

Another thing we need to know, is the rule we learnt from Part 3, that Φ(xy) = Φ(x) x Φ(y), when x and y are co-prime. Applying this rule to Φ(pnqm) through substitution, if we say that x = pn and y = qm, then Φ(pnqm) = Φ(pn) x Φ(qm). The rule works because, as I explained earlier, the prime factors of pn and qm will be p and q respectively because they are both prime numbers, and so pn and qm will always be co-prime too, because they cannot have any common factors.

So we now know how to find Φ(pn) for any prime value of p by using the formula Φ(pn) = pn - pn-1 or Φ(qm) for any value of q using Φ(qm) = qm – qm-1. In this case, we must understand that n and m are used as constants instead of k, and that the meaning is one and the same. Using this information and the knowledge that Φ(pnqm) = Φ(pn) x Φ(qm), we can then find out Φ(pnqm) for any prime values of p and q.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    The Gradient Function

    5 star(s)

    Therefore the gradient function of x5 = 5x4, which corresponds to my results earlier in the tables, proving my predictions of the gradient function was correct. After investigating the gradient function where a is a constant 1, and n is always a whole number, I have concluded this section with

  2. Marked by a teacher

    Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    3 star(s)

    When their disposable income fluctuates, the consumption would follow. But because c1 is less than 1, consumption would change by the amount less than the change in disposable income. In order to estimate how well the equation works, there are 55 observations, which gained from Time series data and Housing statistics from 1948-2002, have been used to estimate.

  1. Math Portfolio Type II - Applications of Sinusoidal Functions

    January 1 1 10.55h February 1 32 10.98h March 1 60 11.62h April 1 91 12.44h May 1 121 13.13h June 1 152 13.65h July 1 182 13.74h August 1 213 13.35h September 1 244 12.67h October 1 274 11.92h November 1 305 11.16h December 1 335 10.64h The times

  2. Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    The last equation was in a very simple linear form and unfortunately economic models are not that basic, however trying to estimate non-linear equations is extremely difficult and so in order to by-pass the problem, the equation needs to be converted into log-linear form, where c = log(C)

  1. Mathematical Investigation

    Conjectures: (a) Transformations of the standard sine function y=sin (b�x) by different values of "b" stretches horizontally the original function y=sin (b�x)'s period by the inverse of the value "b". For instance in the function y=sin (2x), this graph's period per one complete cycle is shortened by inverse of 2, which is 1/2.

  2. Sequences and series investigation

    2(n -1) (n - 1) + 2n - 1 2) 2(n2 - 2n + 1) + 2n - 1 3) 2n2 - 4n + 2 + 2n - 1 4) 2n2 - 2n + 1 Therefore my final equation is: 2n2 - 2n + 1 Proving My Equation and Using

  1. Estimate a consumption function for the UK economy explaining the statistical techniques you have ...

    the proportion of personally disposable income consumed, such as in the early 1970s and early 1980s. Evidence suggests that the Keynesian consumption function could not resolve these problems and there was need for a more accurate consumption function. This led to many attempts to estimate an equation, which can predict

  2. Fractals. In order to create a fractal, you will need to be acquainted ...

    process of modeling the growth of natural life, such as organisms and plants. However, it can also be used to form simple self-similar fractals. The L-System consists of symbols that can be used as strings, an initial starting point that is a string, and a mechanism for translating the generated strings into geometric structures such as fractals.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work