• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13

Numerical Differentiation

Extracts from this document...

Introduction

Numerical Differentiation

Introduction

When finding the roots of an equation, the first thing you would try to do is factorise it. However sometimes factorizing does not find the root, therefore there are Numerical Methods that can be used to approximate the root, and the three different methods that I am using in this coursework are: Decimal search, Fixed Point Iteration, and Newton-Raphson.

image00.png

These are the three main curves that I am using:


image01.pngimage10.png

Change of Sign

image11.png

Change of sign works by taking increments between two values, then substituting the incremented values into the equation to get the y values. The intersection of the axis is found by the change of sign, because the line must have gone through the x-axis because it has changed from positive to negative or vice versa. The positive and negative values are then used as the bounds for the increments, and so the process is continued as you refine your search to the required degree of accuracy.

Finding the root of the equation between x=2 and x=3.

x

y

2

3

3

-3.5

2

<  x  <

3

x

y

2.0

3

2.1

2.206

2.2

1.428

2.3

0.672

2.4

-0.056

2.3

<  x  <

2.4

x

y

2.30

0.672

2.31

0.597841

2.32

0.523968

2.33

0.450387

2.34

0.377104

2.35

0.304125

2.36

0.231456

2.37

0.159103

2.38

0.087072

2.39

0.015369

2.40

-0.056

2.39

<  x  <

2.40

x

y

2.390

0.015369

2.391

0.008216971

2.392

0.001068288

2.393

-0.006077043

2.392

<  x  <

2.393

x

y

2.3920

0.001068288

2.3921

0.000353604

2.3922

-0.000361047

2.3921

<  x  <

2.3922

x

y

2.39210

0.000353604

2.39211

0.000282137

2.39212

0.000210671

2.39213

0.000139205

2.39214

6.77397E-05

2.39215

-3.72549E-06

2.39214

<  x  <

2.39215

x

y

2.392140

6.77397E-05

2.392141

6.05932E-05

2.392142

5.34467E-05

2.392143

4.63001E-05

2.392144

3.91536E-05

2.392145

3.20071E-05

2.392146

2.48606E-05

2.392147

1.7714E-05

2.392148

1.05675E-05

2.392149

3.42102E-06

2.392150

-3.72549E-06

2.392149

<  x  <

2.392150

x= 2.39215 (6s.f)


Error Bounds

...read more.

Middle

0

5.29

1

1.69

2

0.09

3

0.49

4

2.89

To show another limitation of The Decimal search method I have used the equation:

x

(x+3.9)(x–3.9)

image14.png

As you can see from the table below, there must be a sign change between x=3 and x=4, however looking at the graph shows that there is actually a discontinuity.

x

y

0

0

1

-0.070373

2

-0.1784121

3

-0.4830918

4

5.0632911

5

0.5107252

Newton-Raphson Method

xr+1 =  xr f (xr)  

                f ’(xr)

y= 4ln|x| - x + 2

dy= -1 + 4

dx

image15.png

x0

1

x0

6

x1

0.666666667

x1

15.50111363

x2

0.724372086

x2

12.08113601

x3

0.727506177

x3

11.90987844

x4

0.727514477

x4

11.90926753

x5

0.727514477

x5

11.90926752

α= 0.727514 (6s.f)

β= 11.9093 (6s.f)

Error Bounds

x= 0.727514 ± 0.0000005

f(0.7275145) = 4xln0.7275145-0.7275145+2

   = 1.04545x10-07         >0

f(0.7275135) = 4xln0.7275135-0.7275135+2

   = -4.39363 x10-06     <0

When the bounds are put into the formula, they show a change of sign which means that there is a root between the two intervals, therefore confirming that:

α= 0.727514 ± 0.0000005.

Therefore:

α= 0.727514 (6s.f.)

1.

image16.png

The first stage is to find the tangent to the curve at the point x0. This is done by differentiating the function. Then with the equation of the tangent the intersection with the x-axis is found.

2.

image02.png

The point of intersection x value is then used as the new point for the tangent of the line, and again the intersection of the axis with the tangent is found.

3.

image03.png

This process is repeated, and it converges very quickly to the value.

When Newton-Raphson does not work

image04.png

 y= 20x5– 3x2 + 0.1

dy= 100x4-6x

dx

x0= 0

x1= 0-(20x05-3x02+0.1)

          100x04-6x0

x1= 0-0.1

        0

Cannot divide by 0.


Fixed Point Iteration

My Function is:  

image05.png

This can be arranged to:

y= x

and either

g(x)= ln|-7+10x|

g(x)= 0.1ex+ 0.7

0 = 0.2ex2x+1.4

           -1.4+2x = 0.2ex

-7+10x = ex

          ln|-7+10x|= x

or

         0 = 0.2ex2x+ 1.4

                    2x = 0.2ex+ 1.4

                       x= 0.1ex+ 0.7

image06.png

image07.png

Using this rearrangement α cannot be found because its gradient is approximately 3.8. However β has a gradient between 1 and -1, therefore it can converge.

Conversely with this rearrangement α is possible to work out because the g(x) has a magnitude between 1 and -1, however β has a root with a magnitude greater than 1.

Therefore both functions must be used to find all the roots of the equation.

image08.png

x0

0

x1

0.8

x2

0.922554093

x3

0.951570754

x4

0.958977437

x5

0.960902721

x6

0.961405517

x7

0.961536984

x8

0.96157137

x9

0.961580364

x10

0.961582717

x11

0.961583332

x12

0.961583493

x13

0.961583535

x14

0.961583546

α= 0.961584 (6s.f.)

x0

3

x1

3.135494216

x2

3.192734792

x3

3.215965511

x4

3.225241724

x5

3.228921883

x6

3.230378172

x7

3.23095386

image09.png

x8

3.231181344

x9

3.231271221

x10

3.231306729

x11

3.231320756

x12

3.231326297

x13

3.231328487

β= 3.32133 (6s.f.)

...read more.

Conclusion

x

EXE

Then pressing execute again repeats the calculation so you can work it out very quickly.

Decimal Search

Decimal search takes the longest to converge with 41 iterations, however the method contains the easiest calculations. Decimal search is a bit more difficult to set up on calculators than the other two methods. Graphical calculators with a table function are probably the easiest to set up. If a calculator with a table function is not available the values would need to be written down to keep track of the calculations. With a good knowledge of a spreadsheet program such as Microsoft Excel and using IF and THEN statements, would take the human error out, and speed up the process. The main problems with Decimal search is that the process stops when one sign change is found, therefore other roots are missed, and when the root is repeated or just goes through the axis but comes back out before the next increment.

On my calculator these are the steps used to set it up:

0.2eX-2x+1.4

This is inputting the function into the calculator.

RANG

Strt: 0

End: 10

Ptch: 1

EXE

Pressing the RANG button allows you to edit the range of the table. I set it to go from 0 to 10 in intervals of 1.

EXE

This runs the table and gives you the x and f(x) values. Then all that is needed is to change the range of the table to the bounds from the sign change and change the intervals.

        -  -

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    The Gradient Function

    5 star(s)

    162 3.01 164.170824 218.1672 3 162 3.001 162.216108 216.2161 2 32 2.1 38.8962 74.088 2 32 2.01 32.64481602 64.96481 2 32 2.001 32.06404802 64.09605 1 2 1.1 2.9282 10.648 1 2 1.01 2.08120802 8.242408 1 2 1.001 2.008012008 8.024024 x x4 2x4 gradient 1 1 2 8 2 16 32

  2. Marked by a teacher

    Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    3 star(s)

    = 8789 [0.000]** log-likelihood 109.676 DW 0.439 no. of observations 53 no. of parameters 2 mean(LC) 12.6755 var(LC) 0.161805 LC = + 0.6873 + 0.9453*LYP (SE) (0.128) (0.0101) Figure3 Table 4 EQ (4) Modelling LC by OLS (using project12min.xls) The estimation sample is: 1950 to 2002 Coefficient Std.Error t-value t-prob Part.R^2 LC_1 0.632198 0.1034 6.11 0.000 0.4278 Constant

  1. C3 Coursework: Numerical Methods

    The Ease of Use of the Software To carry out my calculations for the Change of Sign, x=g(x) and Newton Raphson methods, I used the spreadsheet programme Microsoft Excel. In order to use the decimal search method to look for a change of sign it was very simple to input my formulae and intervals between my points into Excel.

  2. MEI numerical Methods

    multiple formulas in order to satisfy the methods, for more information on the formulas read the sections below where it deeply talks about them and how they were created. Solution to the problem: Method of bisection: To use the method of bisection, we must rearrange the equation so it = 0.

  1. Numerical integration can be described as set of algorithms for calculating the numerical value ...

    Simpson's rule is different to the trapezium rule in that it fits a parabola between successive triples of points, whereas the trapezium rule fits a straight line between successive pairs of points. As a result the number of strips must not be even.

  2. Estimate a consumption function for the UK economy explaining the economic theory and statistical ...

    Likewise this equation is based on total consumption in the economy where as if the equation were to used for actual predictions it would be broken down into different categories of consumables. The uncertainty variable that we calculated needs re-evaluating as it never appeared to impact the consumption function at all.

  1. Numerical Method (Maths Investigation)

    However, the speed of using these methods is very important here. One of the factor that affect the speed of applying each different methods is THE USE OF COMPUTER. The Computer has many useful programs that help me to finish my coursework, such as Microsoft Excel, Microsoft Word and a

  2. Solving Equations. Three numerical methods are discussed in this investigation. There are advantages and ...

    There are 8 columns to set up in order to use the method of bisection and they are as follows: - The number of bisection done. - Lower bound of the target root. - Output of the function when x=a - Upper bound of the target root.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work