• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14

Solutions of Equations by Numerical Methods - Change of sign Method and Decimal Search Method.

Extracts from this document...

Introduction

Solutions of Equations by Numerical Methods Change of sign Method Decimal Search Method f(x)=x�+2x�-3x+2 The solutions of f(x)=0 are the place where the curve cuts the x-axis. The graph shows that there is one real root lying in the interval [-4,-3] f(-4) = -64+32+12+2 = -18 f(-3 )= -27+18+9+2 = 2 The function f(x) is continuous therefore the change of sign form negative to positive in moving from x=-4 to x=-3 shows that there must be a root between the two values. The decimal search method will locate more accurate values of the root systematically by taking increments of size 0.1 in the interval [-4,-3] until a change of sign occurs. x -4 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3 f(x) -18.000 -15.199 -12.592 -10.173 -7.936 -5.875 -3.984 -2.257 -0.688 0.729 2.000 There is a change of sign between -3.2 and -3.1, this show that the root is in the interval [-3.2,-3.1] Continuing the decimal search method will increase the accuracy by narrowing down the interval further. x -3.20 -3.19 -3.18 -3.17 -3.16 -3.15 -3.14 -3.13 -3.12 -3.11 -3.10 f(x) -0.688 -0.540 -0.393 -0.247 -0.103 0.039 0.180 0.320 0.457 0.594 0.729 x -3.16 -3.159 -3.158 -3.157 -3.156 -3.155 -3.154 -3.153 -3.152 -3.151 -3.15 f(x) ...read more.

Middle

The graph shows that there are three real roots lying in the intervals [-2,-1], [0,1] and [2,3]. By substituting y=g(x) into the iterative formula accurate values of the roots can be located. xn+1 = g(xn ) = 1/2 { (xn)�-2(xn)�+2) } I shall use method x=g(x) to obtain the root lying in the interval [0,1]. X 1 2 3 4 5 6 7 8 X 0 1.0000000000 0.5000000000 0.8125000000 0.6080322266 0.7426925379 0.6532395018 0.7126539366 X 67 68 X 0.6888921825 0.6888921825 This shows that the root lies within the interval [0.68889218245, 0.68889218255] The root therefore is 0.6888921825 with a maximum error of � 0.00000000005 For iterations to converge the derivative of g(x) must lie between -1 and 1. -1< g'(x) <1 g(x) = 1/2 (x�-2x�+2) g'(x)= 1/2 (3x�-4x) g'(x)= 1/2 { 3(0.6888921825)�-4(0.6888921825) } = -0.6659257063 This shows that g'(x) lies within the limits and therefore converges to the root. Failure of x = g(x) Method f(x) can be rearranged and written in the form of x=g(x) to locate more accurate values of the roots systematically. f(x) = x�-2x�-2x+2 g(x)= ?(2x�+2x-2) xn+1 = g(xn ) = ? { 2(xn)�+2(xn)-2 } I shall use method x=g(x) ...read more.

Conclusion

However, there is a lot of room for error and mistakes are hard to see until the very end. This method requires the most work and need for the use of different software and hardware. It has a slower speed of convergence than the Newton-Raphson method and can often diverge away towards another root. Despite the unreliability checks can be made to ensure correct results such as making sure that the derivative of g(x) must lie between -1 and 1. This is what confirms the high level of accuracy within the results. Overall each method has its own attributes which make it better than the other two, so it depends on what type of method you wish to apply; simple calculations which can be carried out with ease would be the decimal search method; fast rate of convergence would be the Newton-Raphson method; and high level of accuracy would be x=g(x) method. However, the Newton-Raphson method stands out as being the best method as it combines all the qualities of the other method by having fairly simple calculations; high speed of convergence; and accurate results. Also although each method is less time-consuming with the use of various software and hardware it is not vital for this particular method. 12.02.03 Rachel Withey ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    C3 Coursework - different methods of solving equations.

    5 star(s)

    With the use of Autograph, plotting y = g(x) against y = x graph and selecting them both, clicking on x = g(x) iteration and then selecting a starting point to start the iterations.

  2. MEI numerical Methods

    While with a calculator we would have to start from scratch. Finally to carry out iterations on excel is extremely easy, all you have to do is drag the cell down in order to copy the formula over and excel will automatically convert the formula for the new cell.

  1. Decimal Search.

    0 = 2x5 - 2x5 = 2x = x = This method cannot work with this graph, as the gradient is smaller than -1, and the value for x consequently diverges. Comparison To compare the three methods, I shall use the equation used for the decimal search method: y =

  2. Numerical solutions of equations

    There has been no change in x-values between x7 and x8 for this number of decimal places. It is clear that another root has been successfully found using this method. My positive root is x = 0.724491959 (9 decimal places)

  1. In my coursework I will be using three equations to investigate their solutions using ...

    x y 4 4.687548148 4.687548148 5.195135269 5.195135269 5.554033303 5.554033303 5.800790441 5.800790441 5.967384127 5.967384127 6.078530709 6.078530709 6.152113534 6.152113534 6.200582955 6.200582955 6.232405254 6.232405254 6.253253236 6.253253236 6.266892437 6.266892437 6.275807357 6.275807357 6.281630902 6.281630902 6.285433572 6.285433572 6.287916018 6.287916018 6.289536331 6.289536331 6.290593809 6.290593809 6.291283911 6.291283911 6.291734245 x y 6.29255215 6.292561807 6.292561807 6.292568109 6.292568109 6.29257222 6.29257222 6.292574903

  2. C3 Numerical Solutions to Equations

    = -1.08*10^-7. f(0.48269596) = 0.0113 Therefore there is a root as the function is continuous. Taking 4 as the first guess gives Therefore x=4.05137424 � 0.000000005 f(4.05137423)

  1. I am going to solve equations by using three different numerical methods in this ...

    #NUM! 7 #NUM! #NUM! #NUM! 8 #NUM! The root found is not correct, as the gradient is greater than 1; therefore, it is impossible to use this method to find the root. Comparison of methods: I have finished investigating three methods. In the whole process I found I can solve the non-trivial equation by these three methods properly.

  2. Solving Equations. Three numerical methods are discussed in this investigation. There are advantages and ...

    bound is 2.8 and the function of the upper bound is 1.74() and they have no sign change due to it has an asymptote between 1 and 2 therefore there is no sign change and this method will fail when it is not continuous function.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work