• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Solving Equations Using Numerical Methods

Extracts from this document...

Introduction

Matt Coles        Centre Number – 40120        Candidate Number - 3135

Solving Equations Using Numerical Methods

For my coursework, I am going to solve equations that cannot be solved analytically. This is when the equation would have been solved by using the quadratic formula, completing the square or by factorising it. The equations used will be solved numerically and there are three methods that I will be using:

• The Change of Sign method
• The Newton-Raphson method
• The Rearrangement method

Method 1: The Change of Sign Method

The first method that I will be using is the Change of Sign method. The equation that I will be solving is y=x3+3x2-2x-1. To do this, I will be drawing the function of                 f(x)=x3+3x2-2x-1.

Root α

Root β

Root γ

To solve this equation using the Change of Sign method, I will be using the Decimal Search on Microsoft Excel.Firstly, I started by entering the equation into Autograph to get a sketch of the graph.

Middle

After that, I moved in closer, entering -3.5 to -3.49 (in 0.001’s) with the formula in the column next to it. This gave me the answer as to where the change of sign was – between -3.491 and -3.49.

Finally, I entered the numbers between -3.491 and -3.49 (in 0.0001’s) into Excel. This showed me that the change of sign was between         -3.4909 and -3.4908.

This is now up to 5 sig.fig. meaning that I have found the answer with the error bounds on the left hand side. The error bounds show that this works as there is a change of sign.

FAILURES

This method fails in two ways – when there is a repeated root or there are two roots within consecutive integers. To show how this method fails, I am using the equation x3+x2-5x+3=0. To do this, I will be drawing the function of f(x)= x3+x2-5x+3.

Method 2: The Newton-Raphson Method

Root α

Root β

Conclusion

Root β. The red line is the function of f(x)=x3-7x2+x+3 and the blue lines are the sliding tangents.The third root I have chosen to use is Root γ. Below is the Excel spread sheet with f(xn) and its derivative, f’(x) shown.

Root γ

On the left is the equation that shows the sliding tangent of the Newton-Raphson Method in a graphical form forRoot y. The red line is the function of f(x)=x3-7x2+x+3 and the blue lines are the sliding tangents.  Root γ = 2.4023 (5 sig.fig.).This root has error bounds

FAILURES

y=2x3-3x2-6x+4

Root γ

Method 3: The Rearrangement Method

The third method that I am using is the Rearrangement Method. For this method, I will be using a different function to the other two. The equation I will be using for the Rearrangement method is y=x3+2x2-2x-2. This means that the function I will be using is f(x)= x3+2x2-2x-2.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Core & Pure Mathematics essays

1.  ## C3 Coursework - different methods of solving equations.

5 star(s)

As an example I have used to demonstrate it is the f(x) = x5 + 6x2 - x + 4 Below is how the graph looks like : When I re arrange the equation in the form of x= g(x), it turns out to be this: When I plot this

2.  ## The Gradient Function

5 star(s)

gradient 1 1 -2 -4 2 4 -8 -8 3 9 -18 -12 4 16 -32 -16 Using the formula naxn-1, I can see that the formula for -2x� is -4x, without doing any algebraic proof or tables. However, this is not necessarily the case, and therefore I will try to test it.

1. ## Best shape for gutter and further alegbra - using Excel to solve some mathematical ...

The mode can be seen from the bar chart. As the numbers in the frequency column change the pupils will be able to see the mean being recalculated and the bar chart adjusting itself to the new values.

2. ## Mathematical equations can be solved in many ways; however some equations cannot be solved ...

I shall now solve it using the Newton-Raphson method to find the root in [0, 1] to the same degree of accuracy. ==> I shall start at 0 as it is a reasonable starting point in order to find the root.

1. ## Three ways of reading The Bloody Chamber.

We don't read these myths 'innocently' as Umberto Eco would put it. We read them with a knowing distance. If to read them merely as myths, to read them innocently, is to read them at the second semiological level, then by reading them at a third level of semiological analysis, we read them knowingly, 'ironically'.

2. ## Numerical solutions of equations

three, as it does not involve any iterations, so mistakes with iterative formulas and rearrangements are not applicable as with the other two methods used. This method is very advantageous because it immediately provides intervals for the root which I can work towards to obtain an answer, and with each

1. ## In this coursework I will be looking at equations that cannot be solved algebraically

It also has a gradient that is smaller than that of the line which has a gradient of -1. So in this case gradient of g(x) follows the rule which means the method will work. Failure of Rearrangement Method There are many case where the rearrangement will fail; at any

2. ## C3 COURSEWORK - comparing methods of solving functions

When the line met the curve, a tangent is drawn and extended until it meets the x-axis and it is a new point on the x-axis, called X3, which is equal to -3.5566. From X3, draw a vertical line until it meet the curve y=f(x). • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work 