• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Solving Equations Using Numerical Methods

Extracts from this document...


Matt Coles        Centre Number – 40120        Candidate Number - 3135

Solving Equations Using Numerical Methods

For my coursework, I am going to solve equations that cannot be solved analytically. This is when the equation would have been solved by using the quadratic formula, completing the square or by factorising it. The equations used will be solved numerically and there are three methods that I will be using:

  • The Change of Sign method
  • The Newton-Raphson method
  • The Rearrangement method

Method 1: The Change of Sign Method

The first method that I will be using is the Change of Sign method. The equation that I will be solving is y=x3+3x2-2x-1. To do this, I will be drawing the function of                 f(x)=x3+3x2-2x-1.

Root α

Root β

Root γ

To solve this equation using the Change of Sign method, I will be using the Decimal Search on Microsoft Excel.Firstly, I started by entering the equation into Autograph to get a sketch of the graph.

...read more.


After that, I moved in closer, entering -3.5 to -3.49 (in 0.001’s) with the formula in the column next to it. This gave me the answer as to where the change of sign was – between -3.491 and -3.49.

Finally, I entered the numbers between -3.491 and -3.49 (in 0.0001’s) into Excel. This showed me that the change of sign was between         -3.4909 and -3.4908.

This is now up to 5 sig.fig. meaning that I have found the answer with the error bounds on the left hand side. The error bounds show that this works as there is a change of sign.


This method fails in two ways – when there is a repeated root or there are two roots within consecutive integers. To show how this method fails, I am using the equation x3+x2-5x+3=0. To do this, I will be drawing the function of f(x)= x3+x2-5x+3.

Method 2: The Newton-Raphson Method

Root α

Root β

...read more.


Root β. The red line is the function of f(x)=x3-7x2+x+3 and the blue lines are the sliding tangents.The third root I have chosen to use is Root γ. Below is the Excel spread sheet with f(xn) and its derivative, f’(x) shown.

Root γ

On the left is the equation that shows the sliding tangent of the Newton-Raphson Method in a graphical form forRoot y. The red line is the function of f(x)=x3-7x2+x+3 and the blue lines are the sliding tangents.  Root γ = 2.4023 (5 sig.fig.).This root has error bounds



Root γ

Method 3: The Rearrangement Method

The third method that I am using is the Rearrangement Method. For this method, I will be using a different function to the other two. The equation I will be using for the Rearrangement method is y=x3+2x2-2x-2. This means that the function I will be using is f(x)= x3+2x2-2x-2.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Core & Pure Mathematics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Core & Pure Mathematics essays

  1. Marked by a teacher

    C3 Coursework - different methods of solving equations.

    5 star(s)

    As an example I have used to demonstrate it is the f(x) = x5 + 6x2 - x + 4 Below is how the graph looks like : When I re arrange the equation in the form of x= g(x), it turns out to be this: When I plot this

  2. Mathematical equations can be solved in many ways; however some equations cannot be solved ...

    I shall now solve it using the Newton-Raphson method to find the root in [0, 1] to the same degree of accuracy. ==> I shall start at 0 as it is a reasonable starting point in order to find the root.

  1. Numerical solutions of equations

    x6 = 0.680769 x7 = 0.680769 I can see a definite convergence from x6. So the root is x = 0.680769 which is similar to what I obtained when finding the same root using the Rearrangement method and the Decimal Search method.

  2. C3 Coursework: Numerical Methods

    Therefore, the root of the equation, y=3x3-11x+7, is 0.7526 with an error bound of �0.00005. I shall now use the x=g(x) method to solve the equation y=3x3-11x+7. As with the Change of Sign and Newton Raphson methods I shall use the point x=0 as my starting point.

  1. Solving Equations. Three numerical methods are discussed in this investigation. There are advantages and ...

    They are then shown by computer graphically: Then we set up a fixed point - and it can be any value but near to the target root and we are able to find a better approximation call, this sequence can repeat and eventually estimations approach to the target root will be found.

  2. I am going to solve equations by using three different numerical methods in this ...

    0 3.892456989 -0.312550189 -0.312550189 0 3.892456989 -0.312550189 Root is -0.3125502 to 7d.p Error bounds is -0.3125502�0.00000005 Root bounds is -0.31255025<x<-0.31255015 Check X Y -0.31255025 -2.3749E-07(negative) -0.31255015 1.51756E-07(positive) As the graph shows, it occurs failure. 0.5 is chosen for Xr and it is near the turning point .By using the Newton

  1. Am going to use numerical methods to solve equations that can't be solved algebraically

    I am confident that I can have this root to four decimal places giving error bounds. Therefore the root is x = 1.467443089= 1.46745 + 0.00005 Results from other two roots x0 = 0 x1 =0.334026333 x2 =0.615299538 x3 =0.348013325 x4 =0.334012999 x5 =0.334026363 x6 =0.334026364 x7 = 0.334026364 x1=

  2. C3 COURSEWORK - comparing methods of solving functions

    At last, I can see that Newton Raphson converges to a value near to -3.5269. Error Bounds We need to use the change of sign method to trap the root between two solution bounds I evaluate f(-3.52695) and f(-3.52685): f(-3.52685)=-0.00051 f(-3.52695)=0.000193 This change of sign shows that the root must be between these two values.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work