• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8

# Statistical Analysis of Facial Proportions

Extracts from this document...

Introduction

Maths coursework Statistical Analysis of Facial Proportions The coursework task that I am following is S1 Task A. The aim of my investigation is to find how beautiful the year seven pupils are in my school, according to Pythagoras' Theory that the more beautiful a person is, the closer the measurements of certain features of the body, to the ratio of 1:1.618. The samples that I will take will be random samples of males and females in year seven. The samples will be taken in the following way. Each of the pupils in year seven has a number next to their name in the teachers' register. I will select random numbers using the random number generator facility on my graphic calculator, and the numbers that match up with the names on the register will be selected from the population and the submitted to the analysis. I will select 25 people from the register at random and submit the same people to both measurements. If the same number is selected again, I will take the next random number as the next person for analysis. The measurements that I will be taking will be: 1. ...read more.

Middle

Proximal Central Ratio Proximal Central Ratio 5 3.1 1.613 4.5 3.4 1.324 5.5 3.2 1.719 5.2 3.1 1.677 3.6 2.4 1.5 4.5 3 1.5 3.4 2.9 1.172 4.5 2.5 1.8 3.2 2.4 1.333 3.5 3 1.167 5 3 1.667 5.3 0.2 1.656 4.4 3 1.467 4 2.8 1.429 4 2.5 1.6 4 2.5 1.6 3.7 2 1.85 3.5 2.8 1.25 3.4 2.8 1.214 3.8 3 1.267 4.1 2.8 1.464 4.8 3.1 1.548 3.7 3 1.233 4.5 3 1.5 5.1 2.9 1.759 3.5 2.5 1.4 4 2 2 4.1 3.2 1.281 3.5 2 1.75 4.6 2.7 1.704 4.5 2.1 2.143 5 32 1.563 4.5 2 2.25 4.8 3.1 1.548 4.8 2.5 1.92 4.7 3.2 1.469 3.7 2.5 1.48 4.2 3 1.4 4.2 3.8 1.105 4.4 3.2 1.375 4.6 3.3 1.394 5 2.9 1.724 4.2 3 1.4 5 3.6 1.389 4.6 3 1.533 4.5 2.7 1.667 4.7 2.9 1.621 4.8 3 1.6 5.8 3.3 1.758 4.7 2.9 1.621 Measurements of the Mouth and Nose Ratios. Males The sample mean = 1.606 The sample variance = 0.093 Females The sample mean = 1.603 The sample variance = 0.067 Since the samples are random, the distribution of the sample means are equals to the actual populations being estimated. ...read more.

Conclusion

Males The sample mean = 1.598 The sample variance = 0.086 Females The sample mean = 1.498 The sample variance = 0.028 Since the samples are random, the distribution of the sample means are equals to the actual populations being estimated. Therefore can be used to estimate the parent population. Males Unbiased estimate of the Population mean = 1.598 Females Unbiased estimate of the Population mean = 1.498 However, the sample variance is a biased estimator of the population variance. To convert this to an unbiased estimator, this method was used; If S squared is the sample variance of a sample size n then, x S squared is an unbiased estimator of the population variance. Males Unbiased estimate of the population variance = 25 x 0.086 24 = 0.090 Females Unbiased estimate of The population variance = 25 x 0.028 24 = 0.029 Therefore for the whole population: Males X ~ N (1.598,0.086) Females X ~ N (1.498,0.029) To compare these results, I will calculate 95% Confidence intervals for males and females, and compare the size of the interval. I will also compare where the intervals lie in relation to each other. Males: X ~ N (1.598,0.086) Females: X ~ N (1.498,0.029) Placing of confidence intervals. Males Females ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Probability & Statistics section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Probability & Statistics essays

1. ## The heights of 16-18 year old young adults varies between males and females. My ...

5 star(s)

= 1.6449 ?� n-1 ( n ) S� n-1 = 50 x 9.13 = 9.316 49 � = � x ? n-1 V n � = 70.1 � 1.6449 x 9.316� V 50 � = 70.1 � 1.6449 x V 9.316 7.071 � = 70.1 � 1.6449 x 3.052

2. ## The mathematical genii apply their Statistical Wizardry to Basketball

It also allows me to use the chi squared test on the model to check if there is any evidence to suggest that one thrower is better than the other at various critical levels.

1. ## Statistics coursework

- IQ of girls in year 7 (Table 3) IQ Frequency Cumulative Frequency Percentage of total 60<IQ<70 0 0 0 70<IQ<80 0 0 0 80<IQ<90 3 3 5.17 90<IQ<100 10 13 22.41 100<IQ<110 33 46 79.31 110<IQ<120 9 55 94.83 120<IQ<130 2 57 98.28 130<IQ<140 1 58 100 - IQ of boys in year 7 (Table 4)

2. ## Guestimate - investigate how well people estimate the length of lines and the size ...

Frequency Cumulative Frequency Upper Class Boundary 0 < l < 2 0 0 2 2 < l < 4 3 3 4 4 < l < 6 17 20 6 6 < l < 8 6 26 8 8 < l < 10 4 30 10 10 < l <

1. ## Study of the height/diameter ratio of limpets inhabiting the middle shore region of exposed ...

This ratio could be explained by other factors outside the scope of this investigation. After performing the confidence level test, it can be concluded graphically (graphs attached) that there is indeed a significant statistical difference between the mean ratios of limpets on the exposed and sheltered shores.

2. ## Data Analysis of American House Price

By comparing the values of the range and inter-quartile range in relation with the standard deviation, it is clear that the houses with a pool have a higher dispersion in price and the prices are more spread out than houses without a pool.

1. ## &amp;quot;The lengths of lines are easier to guess than angles. Also, that year 11's ...

data into the formula again: 1 - 6 x 4243.74 = 1 - 25462.44 = 1 - 0.709181 = 0.290819 33(1089-1) 35904 This means that when these values are plotted on a scatter graph they will also have extremely little correlation.

2. ## Identifying Relationships -Introduction to Statistical Inference.

Are the RV PACKAGES and the factor TYPE related in any way? Are they dependent? Investigating relationships If there was no relationship between the RV and the factor i.e. acceptance of package customers was completely independent of type of hotel, you would expect the percentage of respondent's in each package

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to