• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The normal distribution

Extracts from this document...

Introduction

The normal distribution

When many measures are taken of something (eg, scores in a test, people's heights, pollution levels in rivers) the spread of the values will have a bell shape, called the normal distribution.

A number of statistical tests use this characteristic distribution (or dispersion) of values to test whether two samples are the same or different.

There are several basic terms that are commonly used with the normal distribution.

Average (mean)

A measure of the average score in a set of data. The mean is found by adding up all the scores and then dividing by the number of scores.

Range

The difference between the largest core and the and smallest score.

Median

If a set of scores are arranged from lowest to highest the median is the score in the middle, with half above and half below.

Mode

The value that occurs most often

Standard deviation

s

A measure of the standard (average) deviation of the scores from the mean.The larger the standard deviation the larger the range of values/variation in the data

  1. Subtract each score from the mean
  2. Times each difference by itself (negs turn positive)
  3. Add up all the squared differences
  4. Divide the total by the number of scores minus 1
  5. Take the square root
...read more.

Middle

image07.png

image08.png

Then calculate the square root to get the standard deviation

Comparing two samples: using the t test

The average, standard deviation and the number of scores in each sample are the three things needed to do a test. A t test is used with two samples of data to test whether they are significantly different (ie, whether one is truly higher or lower than the other). The same sample of scores as used above is now compared with another sample of scores.

Sample 1 scores

Sample 2 scores

41

38

43

32

37.5

35.5

38.5

33

44

31.5

38

40.5

37.5

34

Average (image09.png)

39.93

34.93

Standard deviation (s)

2.73

3.31

Number of scores (n)

7

7

image11.pngimage01.pngimage02.pngimage10.png

  1. Put the values into the equation and work it out carefully!
  2. Note down the value of t found. In this case it is 3.08.
  3. You will also need to know how many degrees of freedom to use with the critical values of t table. Degrees of freedom  =  (nsample1 + nsample2) – 2 . In this example  this equals 7 + 7 –2 = 12.
  4. Find the value of t
...read more.

Conclusion

png" style="width:648px;height:469.47px;margin-left:0px;margin-top:0px;" alt="image03.png" />

2. Calculate the average, range, median and mode for the following set of data (a random set of your exam results from the last exam): 66.25, 15, 32.5, 26.25, 48.75, 48.75, 36.25, 35, 68.75, 72.5, 43.75, 40, 20, 48.75, 12.5, 41.25, 53.75, 50, 31.25, 95, 22.5, 33.75, 27.5, 55, 12.5, 45, 18.75, 42.5, 62.5, 85, 75

Degrees of freedom

Value of t that must be exceeded (5% level)

1

12.706

2

4.303

3

3.182

4

2.776

5

2.571

6

2.447

7

2.365

8

2.306

9

2.262

10

2.228

11

2.201

12

2.179

13

2.160

14

2.145

15

2.131

16

2.120

17

2.110

18

2.101

19

2.093

20

2.086

22

2.074

24

2.064

26

2.056

28

2.048

30

2.042

40

2.021

60

2.000

120

1.980

3. The two sets of data given below are resting heart rates for a group of students and a group of professional athletes. Use the t test to find out if they are significantly different (using the table at right to test the value of t with the appropriate number of degrees of freedom).  I need to see how the mean, standard deviation and t value were calculated.

        Professional

Students                athletes

57.1                        61.7

47.6                        47.0

58.0                        55.5

74.8                        62.6

  1. 41.8

51.9                        60.8

64.2                        50.2

49.6                        44.2

67.2                        45.4

62.6                        39.3

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Probability & Statistics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Probability & Statistics essays

  1. The mathematical genii apply their Statistical Wizardry to Basketball

    I can say now that skill level did not increase during the collection of the sample size but what is more likely to have occurred is the opposite. The explanation for Dom being more tired, bored or frustrated is probably because he shot a total of 345 baskets whereas Lee completed his in 269 shots.

  2. Dehydration and Gas Chromatography of Methylcyclohexanols.

    The mixtures of organic distillate and magnesium sulfate were then filtered through gravity filtration to remove the magnesium sulfate from the organic distillate. Gas chromatographic analysis was then performed individually on each organic distillate sample in order to obtain a distinct gas chromatogram for each sample.

  1. Driving test

    Hypothesis 2 Females will benefit more from lessons than males. I think that females will benefit lessons more because females are more nervous and lessons would help them to become more confident. I will draw two graphs, one for males and the other for females, to work out what gender benefits lessons the most.

  2. Estimating the length of a line and the size of an angle.

    I will pre-test it to make sure I get the correct results before I collect the actual results and to see if any amendments and alterations need to be made to the sheet. In order for me to collect the data I would have to meet the pupils.

  1. find out if there is a connection between people's IQ and their average KS2 ...

    All I had to do was select the two columns from the data that I wanted - IQ and average KS2 SATs results and the graph was drawn. As you can see from my scatter graph, nearly all the points are bunched up, very near the trend line on the lower middle part of the graph.

  2. I want to find out if there is a connection between people's IQ and ...

    These two points are called outliers. I will change the two outlying pieces of data with two more fitting pieces of data, and see if this changes anything. Also I can see how my scatter graph has changed and where my line of best fit will be.

  1. ECOLOGY ASSIGNMENT

    The results of The Mann-Whitney U-Test are documented on the following page by the use of a table and statistical valuations. HEDGEBANK A HEDGEBANK B N of q/rats N of G.R. Rank N of q/rats N of G.R. Rank 1 5 13 12 8 19.5 2 3 5.5 13 5

  2. Investigation into the relationship between P1 exam results and A-level results

    54 23 82 84 24 68 76 25 80 73 26 58 69 27 67 75 28 90 88 29 73 61 30 87 88 31 90 74 32 73 76 33 53 79 34 90 90 35 82 77 36 70 73 37 85 79 38 96 85 39

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work