• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

A comparison of the efficiencies of solar cells and solar panels

Extracts from this document...

Introduction

Leonore Cilliers - 0810                Leighton Park School - 51325

Physics Plan

Solar cells:

Below are diagrams to show how the solar cell will be set up to measure the power output.

image48.jpg

image00.png

image01.png

image12.png

image32.pngimage22.png

image41.png

image35.png

image36.png

image46.png

The photovoltaic cell circuit will be set up as follows:

image49.jpg

image47.png

image03.pngimage04.pngimage02.png

image05.png

image06.png

The experiment must be completed in complete darkness with the only incident light coming from the 150W light bulb, and the light bulb must be kept at a fixed height above the photovoltaic cell, to ensure a fair test. I will cover the experiment with a cardboard box to ensure that the only incident light comes from the 150W bulb connected to the 230V mains.image07.png

Procedure:

Once the above equipment and circuit has been set up, the voltage and current of the circuit can be measured. Vary the resistance of the resistor and record the voltage and current at each resistance.

...read more.

Middle

0.809

2600

378

854

0.000378

0.854

2650

364

956

0.000364

0.956

2750

360

995

0.000360

0.995

2780

346

1114

0.000346

1.114

2890

340

1161

0.000340

1.161

2940

Calculating the power output of the photovoltaic cell:

Power (W) = Current (A) x Voltage (V)

To measure the power output, plot a graph of voltage against 1/current and measure the gradient of the best fit line.

image08.pngimage09.png

image10.png

image13.pngimage11.png

image15.pngimage14.png

I used my preliminary results to draw a graph and to measure the power output.

image50.png

Equation of graph:

y = 0.001x - 1.7657

Gradient  =  Power Output         =  0.001W

Calculating the power input of the photovoltaic cell:

To measure the power input, measure the irradiance (in Watts/m2) of the bulb with an irradiance meter. This measurement must be taken at the same fixed distance away from the bulb as the solar cell.image16.png

Irradiance (watts/m2) = ……………

Then measure the dimensions of the solar cell in order to calculate the area of the solar cell.

image19.pngimage18.pngimage17.png

image20.png

image20.pngimage21.png

The power input of the solar cell can then be calculated as follows:

Power (W) = Irradiance (Wm-2) x Area (m2)

...read more.

Conclusion

Factors to be taken into account when comparing the two methods:

The input energy has to be identical if the experiments are being compared. Therefore, the bulb must be placed at the same fixed height above both experiments. The experiments must be conducted in complete darkness so that the only incident light during both experiments comes from the 150W bulb.image44.png

In the solar cell experiment not all incident light energy will be converted to electrical energy as some light may be reflected off the surface of the solar cell. In the solar panel experiment, some thermal energy from the water may be lost by conduction and radiation to the surroundings.image45.png

Bibliography:

Wikipedia - Solar Cell

http://en.wikipedia.org/wiki/Solar_cell

Intensity

http://www.glenbrook.k12.il.us/GBSSCI/PHYS/CLASS/sound/u11l2b.html

Irradiance

http://www.fiberoptix.com/technical/measuring-intensity.html

Irradiance meter

http://www.solaqua.com/daysolmet.html

 of

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Peer reviewed

    Solar cells

    3 star(s)

    as shown below: The circle enclosing E and r represents that they are a single component. The current can be worked by connecting the battery to an external resistor. R and r are in series with each other, because the current I flows first through one and then through the

  2. The aim of my investigation is to determine the specific heat capacity of aluminium.

    = A ?' A' i.e. ? = A ?' A' This method is based on the assumption that the rate of loss of heat is directly proportional to the temperature difference between the body and its surroundings. On my graph showing my results for my trial run I can calculate the cooling correction using the method above, Where ?

  1. Characteristics of a Photovoltaic Cell.

    Not a valid filename. Further components exist in the solar systems to generate electricity efficiently. * Charge Regulator - Charge regulators are the link between the modules, battery and load. They protect the battery from overcharge or excessive discharge.

  2. The electrolysis of copper from copper sulphate solution

    think that I have done well to understand the electrolysis of copper from copper sulphate solution. Evaluation: My results are very satisfactory and I am impressed with the results that I have obtained while working in the conditions that I did with the equipment which is not at all comparable with the real thing.

  1. Free essay

    Finding the internal resistance of a solar cell

    Consideration must be taken over deciding how many measurement must be taken and over what range. To increase the precision of the experiment I will use the biggest range available. To gain the biggest range I will use a variable resistor.

  2. Using an LDR to detect the intensity of plane polarised light allowed through a ...

    opportunity to take into account systematic drift, if it is changing over time. The last table corresponds to my final coursework ideas. I am taking each reading three times, if I have time to remove possible inconsistencies. Taking 18 values 3 times is ambitious, so I have chosen to take a certain set of values (the ones on white rows)

  1. Intensity on the power output of a solar cell.

    All of these atoms are sharing with four other atoms and as a result, a crystalline structure is formed. A downside to this however is that none of the electrons are free to move thus making silicon a poor conductor of electricity.

  2. Energy Efficiency Experiments

    We repeated the experiment 5 times as the air track experiment isn?t as accurate as experiment 1 and 2 so by doing it a few times will help us come up with more accurate and reliable results. Experiment 3- Air track (repeated 5 times)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work