• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

A superconductor is a substance which conducts an electric current with zero resistance. It also repels magnetic fields perfectly at a certain point which is also known as the Meissner effect.

Extracts from this document...

Introduction

What is a Superconductor?

A superconductor is a substance which conducts an electric current with zero resistance. It also repels magnetic fields perfectly at a certain point which is also known as the Meissner effect. This effect can cause certain superconductors to float endlessly above a strong magnetic field. Materials which are said to be superconductive include: some semiconductors, certain types of ceramics and metals and their alloys eg. tin, aluminium.

Superconductors are one of the last greatest scientific discovery, not only because the limits of superconductivity have not yet been reached, but the theories that explain superconductor behavior have also been under review.

The History of Superconductors

In 1911, superconductivity was first discovered in mercury by Dutch physicist Heike Kamerlingh Onnes of Leiden University. He was cooling the mercury and when he cooled it to the temperature of liquid helium, 4 degree Kelvin, the resistance suddenly disappeared. Onnes then won a Nobel Price in physics in 1913 for his research in this area. Later on in 1933, German researchers Walther Meissner and Robery Ochsenfeld discovered the Meissner effect (also known as the Meissner-Ochsenfeld effect). It is the effect by which a weak magnetic field decays rapidly to zero in the interior of a superconductor.

...read more.

Middle

Brian D. Josephson, a graduate student from Cambridge University, predicted that electrical currrent would flow between 2 superconducting materials even when they are seperated by a non-superconductor or insulator. His prediction, once confirmed, then won him a Nobel Prize in Physics in 1973. This appearence is now known as the "Josephson effect" and is often applied to electronic devices eg. squid.

In 1986, Alex Muller and Georg Bednorz, researchers at the IBM research Laboratory in Ruschlikon, Switzerland, created a brittle ceramic compound that supercouducted at the highest temperature 30 degrees Kelvin. Ceramics are normally insulators and therefore, researchers did not consider ceramics as possible high temperature superconductors. However, Muller and Bednorz's discovery had entriged the researchers around the world to begin their research in high temperature conductors. Later, in January 1987, a research team at the University of Alabama-Huntsville achieved an impressive 92 degrees Kelvin. A material had been found that would superconduct at temperatures warmer than liquid nitrogen. The world record of 138 degrees Kelvin is now held by a thallium-doped, mercuric-cuprate comprised of the elements Mercury, Thallium, Barium, Calcium, Copper and Oxygen.

In these recent years, many discoveries about superconductivity have been made.

...read more.

Conclusion

A Type I sueprconductor in a magnetic field will completely repel all field lines - the Meissner effect. The perfect exclusion of a magnetic field can be explained by using Faraday's law - electromagnetic fields is proportional to the rate of change of flux linkage. Since no potential difference can exist in a superconductor, then the magnetic field inside a superconductor cannot change.

Moreover, the Type I superconductors have been of limited practical usefulness because the critical magnetic fields are so small and the superconducting state disappears suddenly at that temperature.

-Type II Superconductors

Type II superconductors show a gradual transition from a normal to a superconducting state across a region of "mixed state" behavior. Type II superconductors are also known as hard superconductor. They are all made up of metallic compounds and alloys. These compounds can usually attain higher temperature but the reason behind has not yet been discovered. Some Type II superconductors show higher critical temperatures making technological applications possible.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Objective: To use a search coil and a CRO to investigate the magnetic ...

    Thus, the result agree with the equation , where �0 is the permeability of free space and is the number of turns of the solenoid. 3. It is necessary to place the search coil at the same level and perpendicular to the straight wire.

  2. Investigating the effect of 'length' on the resistance of a wire

    two screws will be screwed into the wooden plank at either ends of the ruler, the screws will also be touching the ruler. The wire chosen for the experiment will be tied around the screws more than once, to ensure that the wire is taut and has no kinks to give better accuracy in the results.

  1. Assess how changing the electric current in the electrolysis of acidified water affects the ...

    in the results table. 3. Taking care to ensure a fair test by taking all the possible variables (detailed below) into account repeat the experiment using the different acid concentrations specified in the results table. 4. If a result appears anomalous repeat that particular experiment.

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    There is no uniformity in the graphs and that the current is not proportional for any of these substances. LDR. This is the light dependant resistor. The graphs here show the resistance in bright and dimly lit rooms. The LDR reacts differently.

  1. The electrolysis of copper from copper sulphate solution

    solution for a longer time increasing the affects of electrolysis and hopefully even enough to completely finish the electrolysing. I had chosen two minutes because of the time restriction and of course because I had to do THREE tests for each concentration of the copper sulphate solution.

  2. Investigating how temperature affects the resistance in a wire

    The using selotape, stick the other two wooden splints onto either side of the one with steel wire. 4. Attach this to the two crocodile clips and place it into the 250-ml measuring cylinder. 5. Connect up the batteries so that a current is flowing through the circuit.

  1. Plotting equipotential lines of electric field

    Therefore the conducting plate must be well protected to prevent wearing out. Don't lock the electrodes too tight. Don't scrape the conducting plate with the flying probe or anything else. 5. The sources of error and improvement In the experiment, there were some sources of error, which made the equipotential lines not correct actually 1)

  2. Heating Effect of a Electrical Current

    This means if I take a result using the same resistance, voltage and mass of water using the time 1 minute, the temperature will be lower than another result I take using the time 30 minutes. This explains how voltage, mass of water, time affects the temperature.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work