• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

A superconductor is a substance which conducts an electric current with zero resistance. It also repels magnetic fields perfectly at a certain point which is also known as the Meissner effect.

Extracts from this document...

Introduction

What is a Superconductor?

A superconductor is a substance which conducts an electric current with zero resistance. It also repels magnetic fields perfectly at a certain point which is also known as the Meissner effect. This effect can cause certain superconductors to float endlessly above a strong magnetic field. Materials which are said to be superconductive include: some semiconductors, certain types of ceramics and metals and their alloys eg. tin, aluminium.

Superconductors are one of the last greatest scientific discovery, not only because the limits of superconductivity have not yet been reached, but the theories that explain superconductor behavior have also been under review.

The History of Superconductors

In 1911, superconductivity was first discovered in mercury by Dutch physicist Heike Kamerlingh Onnes of Leiden University. He was cooling the mercury and when he cooled it to the temperature of liquid helium, 4 degree Kelvin, the resistance suddenly disappeared. Onnes then won a Nobel Price in physics in 1913 for his research in this area. Later on in 1933, German researchers Walther Meissner and Robery Ochsenfeld discovered the Meissner effect (also known as the Meissner-Ochsenfeld effect). It is the effect by which a weak magnetic field decays rapidly to zero in the interior of a superconductor.

...read more.

Middle

Brian D. Josephson, a graduate student from Cambridge University, predicted that electrical currrent would flow between 2 superconducting materials even when they are seperated by a non-superconductor or insulator. His prediction, once confirmed, then won him a Nobel Prize in Physics in 1973. This appearence is now known as the "Josephson effect" and is often applied to electronic devices eg. squid.

In 1986, Alex Muller and Georg Bednorz, researchers at the IBM research Laboratory in Ruschlikon, Switzerland, created a brittle ceramic compound that supercouducted at the highest temperature 30 degrees Kelvin. Ceramics are normally insulators and therefore, researchers did not consider ceramics as possible high temperature superconductors. However, Muller and Bednorz's discovery had entriged the researchers around the world to begin their research in high temperature conductors. Later, in January 1987, a research team at the University of Alabama-Huntsville achieved an impressive 92 degrees Kelvin. A material had been found that would superconduct at temperatures warmer than liquid nitrogen. The world record of 138 degrees Kelvin is now held by a thallium-doped, mercuric-cuprate comprised of the elements Mercury, Thallium, Barium, Calcium, Copper and Oxygen.

In these recent years, many discoveries about superconductivity have been made.

...read more.

Conclusion

A Type I sueprconductor in a magnetic field will completely repel all field lines - the Meissner effect. The perfect exclusion of a magnetic field can be explained by using Faraday's law - electromagnetic fields is proportional to the rate of change of flux linkage. Since no potential difference can exist in a superconductor, then the magnetic field inside a superconductor cannot change.

Moreover, the Type I superconductors have been of limited practical usefulness because the critical magnetic fields are so small and the superconducting state disappears suddenly at that temperature.

-Type II Superconductors

Type II superconductors show a gradual transition from a normal to a superconducting state across a region of "mixed state" behavior. Type II superconductors are also known as hard superconductor. They are all made up of metallic compounds and alloys. These compounds can usually attain higher temperature but the reason behind has not yet been discovered. Some Type II superconductors show higher critical temperatures making technological applications possible.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Objective: To use a search coil and a CRO to investigate the magnetic ...

    There are several sources of error. First, there is reading error, zero error of ammeter. Secondly, the space between coils is not even. Thirdly, the magnetic field around the straight wire and the slinky solenoid is easily disturbed by other apparatus nearby.

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    magnitude of current remains unchanged when the current or the voltage is reversed. The magnitude changes as displayed from the above graphs. The current is proportional to the voltage. The current is not proportional to the voltage. Temperature affects current and resistance.

  1. Investigating the effect of 'length' on the resistance of a wire

    * I will disconnect the wire between each two readings so it does not overheat. * I will have a minimum length of 10cm for the wire. Anything below this length would be likely to cause quick overheating of the wire.

  2. Assess how changing the electric current in the electrolysis of acidified water affects the ...

    in the results table. 3. Taking care to ensure a fair test by taking all the possible variables (detailed below) into account repeat the experiment using the different acid concentrations specified in the results table. 4. If a result appears anomalous repeat that particular experiment.

  1. Characteristics of Ohmic and non-Ohmic Conductors.

    * For my test, I used a filament lamp. * The readings I entered in the table this time contain the intervals of 0.2 from the voltage range of 0-2 Volts Voltage Current (m Amps) (volts) Increase Decrease Average 0.2 8.6 8.4 8.5 0.4 11.1 11.0 11.05 0.6 13.5 13.5

  2. The electrolysis of copper from copper sulphate solution

    for this is to reduce the chances of any anomalies or errors in my results, I have taken the three so that I can make an AVERAGE out of them and then use the average as my result to make the experiment fairer.

  1. Investigating how temperature affects the resistance in a wire

    To combat this problem, the experiment was conducted at room temperature, which means that there would not have been any significant changes in room temperatures. Heat from other sources can also directly affect the temperature of the water bath, so to combat this problem it is kept constant with the

  2. Plotting equipotential lines of electric field

    Therefore the conducting plate must be well protected to prevent wearing out. Don't lock the electrodes too tight. Don't scrape the conducting plate with the flying probe or anything else. 5. The sources of error and improvement In the experiment, there were some sources of error, which made the equipotential lines not correct actually 1)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work