• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Aim To build and test a temperature sensor and analysing its suitability as a bath water thermometer.

Extracts from this document...

Introduction

Physics Sensing Coursework - Temperature sensor Aim To build and test a temperature sensor and analysing its suitability as a bath water thermometer. Introduction In making a temperature sensor the circuit and individual components need to be thought about. Also I need to find a way of measuring my sensor to calibrate its voltage output with the temperature it's measuring. First of all I require a component in my circuit which will change its electrical properties in the changing of temperature. This component is called a thermistor and there are two types; * The positive temperature coefficient thermistor or PTC thermistor has an increased resistance as temperature increases. ...read more.

Middle

For this circuit I will use a simple NTC thermistor which changes variably, not suddenly, with change of temperature. This works by having the thermistor made of a semiconductor and works because raising the temperature of a semiconductor increases the number of electrons able to move about and carry charge, the more charge carriers that are available, the more current a material can conduct and so resistance decreases. Another component I could use for this is a thermocouple. This is made by twisting two wires of differing metals (best is an antimony-bismuth thermocouple) together and having junctions, where the wires are twisted more, placed in a high heat, the following junction cold and this produces a voltage output. ...read more.

Conclusion

The Wheatstone bridge cicuit would look like this; In this circuit all resistors are of equal resistance and so as in the potential divider as the temperature changes and the thermistor resistance changes so does the voltage output. The main difference between the two is that the Wheatstone bridge helps to eliminate noise as fluctuations from the power supply affect both sidesof the bridge. Having done some preliminary testing I found the school power packs to have few fluctuations that shouldn't be worried over. Because the potential divider has less wires and is much simpler and the power pack doesn't affect the results I will use the potential divider circuit in my system. Appartus Water bath Wires 12V power pack Digital multimeter NTC thermistor (about 47k?) 47k? resistor Temperature probe Data logger Diagram ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    o Ohmmeter o Thermometer Diagram: Method: As in the diagram I will firstly set up all my equipment so that I have a tripod, mat and gauze set up. I will have the beaker half filled with water because this is enough to heat the test tube effectively with out the hazard of the water boiling over or spilling out.

  2. The aim of my investigation is to determine the specific heat capacity of aluminium.

    Another source of inaccuracy was the assumption I made in performing the experiment that the reading of the thermometer was the temperature of the whole block. This was not the case as the temperature of the centre of the aluminium block, which was near the heating filament, would have been greater than that of the edge of the block.

  1. I am going to investigate what the resistivity is of a pencil lead. ...

    0.01mm 1.4 I have taken the middle readings the middle reading (0.5V) where appropriate, (the ammeter and voltmeter). This is because it should be the average percentage error and is quicker than working every individual error out. The percentage errors aren't very large with an exception to the voltmeter and

  2. Investigate the relationship between temperature and resistance in a thermistor.

    In the three experiments we did the resistances were very similar with very little disparity between them which shows the experiment was precise. There is only one clear anomalous result which is at 300C I think this is because the thermistor had not got the a high enough temperature for many of the atoms to free electrons.

  1. Investigating how temperature affects the resistance in a wire

    and the y-intercept (c); then substitute the values in. The formula of the treadline is y = 0.0653x + 17.258. Considering the resistance scale is on the y-axis and the temperature scale is on the x-axis, y = the resistance and x = the temperature.

  2. physics sensor coursework

    The reading from the voltmeter can then be recorded. This is my preliminary method: i. Set up sensor circuit. ii. Keep light intensity within laboratory at a constant level (�100 lux). iii. Measure the light intensity beside LDR using a light meter. iv. If light intensity is above desired value, move the opaque object towards the sensor, in order

  1. Experiments with a thermistor

    5.17 Evaluation of graph As the distance between the tip of the thermistor and the candle increases, the voltage increases linearly up to one point, when the voltage remains constant despite the further increase of distance. This is because the temperature around the tip of the thermistor is obviously higher

  2. To investigate how the temperature affects the resistance of a thermistor.

    The type of flame I use to heat my water/oil bath must also stay constant because different types of flames give off more heat for example a roaring blue flame gives off a lot more heat than a large yellow flame (the safety flame)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work