• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An experiment to measure the specific heat capacity of water

Extracts from this document...

Introduction

An Experiment to measure the Specific Heating Capacity of Water by electrical heating

Method

Put a known mass of water in a beaker and then immerse the heating coil in the water.  Connect the heating coil to a DC power supply.  Include an ammeter and a voltmeter in the circuit to measure the current through the coil and the voltage across it.  Switch on the current in the coil and leave it until a reasonable temperature increase has been recorded.

image00.png

Measurements

We recorded the starting temperature and the highest temperature reached during the experiment.  We recorded the time for which the current was flowing and we measured the current and voltage throughout the heating interval.  We recorded all of our measurements which are shown below.

Before commencing the experiment, we considered what precautions we could take to ensure accuracy.  First we changed to a smaller beaker as this would give us less volume of water to heat, enabling us to complete the experiment within the designated time.  We also felt that we gained the following advantages

  • Less water surface area = less heat loss from water
  • Less beaker surface area = less heat loss from beaker

 & less heat to warm up beaker

  • Less water volume = less risk of uneven heating
...read more.

Middle

13.5

1

1.89

9.92

14.0

2

1.89

9.94

14.5

3

1.89

9.95

16.0

4

1.89

9.95

16.5

5

1.89

9.95

20.0

6

1.89

9.94

22.0

7

1.89

9.96

22.0

8

1.89

9.94

25.0

9

1.89

9.93

27.0

10

1.87

9.90

28.0

11

1.87

9.91

30.0

12

1.88

9.92

31.0

13

1.89

9.94

33.0

14

1.88

9.90

34.0

14m 30.39s

1.88

9.90

34.5

18m 50.00s

Not Applicable

Not Applicable

36.0

We stopped collating information at 14m 30.39s as we had reached our target temperature.  At this point the power supply was turned off.  We did however continue to time the increase in temperature until it started to drop, this being the maximum temperature reached by the water.  We recorded this at a time of 18m 50.00 secs.

At this point, we weighed the beaker and water again.

Beaker plus warm water = 295.89g

...read more.

Conclusion

Errors

Source of error

Average

½ smallest division

½ range

Use

%

Mass of Water (g)

200.1

+/- 0.005

(200.28-199.91) = 0.185

            2

0.185

0.1

Change in water temperature (ºC)

22.5

(+/- 0.25) +

(+/- 0.25)

=0.5

Not applicable

+/- 0.5

2.2

Current (I)

1.89

+/- 0.005

(1.89-1.87) =0.01

        2

0.01

0.5

Voltage (v)

9.93

+/- 0.005

(9.96 – 9.90) = 0.03

         2

0.03

0.3

Time (secs)

930.39

+/- 0.005

Not applicable

+/- 0.005

0.0000054

Total % error

3.1

After considering the above table of errors, we amend our figure for Specific Heat Capacity of water as follows

3880.28 +/- (3.1% x 3880.28) = 3880.28 +/- 120.28 j/kgºC

The largest source of error in reaching this solution was the thermometer used to read the temperature, as it was the ½ division that we used to calculate the error.  In order to improve this in a repeat experiment, we would need to find a more accurate thermometer.

Ideas for further research

We could consider the Specific Heat Capacity of water in different environments eg. Under pressure? Surrounding temperature – extreme heat versus extreme cold?

We could compare the Specific Heat Capacity with that of other substances to investigate the differences and why the Specific Heat Capacity of Water is so high.

We could mix water with other substances to investigate the effect on the Specific Heat Capacity of both substances.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Single Phase Transformer (Experiment) Report.

    This will have an effect on the efficiency of the circuit aswell. Transformers can achieve maximum power transfer between the source and the load, by a method called resistance matching, using the formula below: - R1 = N1 2 RL N2 This formula allows the resistance of R1 to equal

  2. The aim of my investigation is to determine the specific heat capacity of aluminium.

    The final temperature achieved at different points within the aluminium will depend on how the block is lagged. If the heat escapes through the sides then the greater the temperature of the block, the greater the temperature gradient and therefore the more heat is lost.

  1. I am going to investigate what the resistivity is of a pencil lead. ...

    To try to get the pencil lead as close to it's original temperature by letting it to cool for a few minutes. Evaluation In my results there is perhaps only one real anomaly and that is the reading for 1V. However this is explainable by the characteristic of semi conductors.

  2. Investigating the monitoring systems used on modern day large A/C for detection of specific ...

    From the diagram on the opposite page, the pick - up unit is a linear - velocity detector that converts the mechanical energy of vibration into an electrical signal of proportional magnitudes. It does this by means of a spring-supported permanent magnet suspended in a coil attached to the interior of the case.

  1. Build a successful sensor that will measure the proximity of a light source.

    lower range in my results using the black tube, than received from using just the dark room. This happens because in infra-red radiation, the photons have energies of about the same size as the energies needed to excite atoms in matter. When an infra-red photon strikes matter it is absorbed.

  2. The purpose of this experiment was to measure the specific heat capacity (Cb) of ...

    The temperature of the room was taken. It was 22 �C . 2. The mass of the empty calorimeter (mc) was then taken. It was 0.5059 kg. 3. The calorimeter was first filled approximately two-thirds with water, and its mass was then found using the weighing scales.

  1. The objective of this laboratory was to measure the specific heat capacity of two ...

    experimental value - theoretical value x 100 theoretical value The percent error for the first metal, iron or steel, was determined in this way: %error = 0.099 cal/g �C - 0.107 cal/g �C x 100 0.107 cal/g �C % error = +- 7.477% For calculation 2 part 2, I found

  2. The Purpose of my sensing circuit is to regulate the temperature in a Steam ...

    1. In determining the value of the fixed resistor, I first took out the negative coefficient thermistor from the circuit and connected a digital multimeter (which was set to read resistance)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work