• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10

An investigation into the time period of a mass-spring oscillating system.

Extracts from this document...

Introduction

Nicholas Moore 11Mc Group Q

An investigation into the time period of a mass-spring oscillating system

Contents

• Pages 2-3        Plan
• Page 4        Results
• Pages 5-9        Analysis
• Page 10        Evaluation & Bibliography

Plan

In this experiment we will investigate the time period of a mass-spring oscillating system. Oscillation is the regular movement of a mass back and forth; from one direction to another e.g. a simple pendulum swinging back and forth. In this experiment, we will investigate the time period of a mass-spring oscillating system, which oscillates up and down. This motion is called simple harmonic motion.

For this experiment we will need to use the following apparatus in order to achieve the desired results:

Method: set up the apparatus as shown in the diagram.

• Use the clamp to secure the spring so the top hook does not move about as this could affect the results.
• Take a 100g mass hook, with 9 100g masses.
• Start with just the mass hook, and pull down the mass on the spring. Do not pull it so far down so it would jump up high in the air, or so that when it compresses upwards, it does not become fully compressed, as this will also affect the results adversely.
• Let go, and use a stopwatch to time 20 oscillations. You do not need to start timing at the moment you let go; instead you can start timing when the mass reaches either bottom or top of its oscillations, and then start timing.
• When twenty oscillations have completed then stop timing.
• Then repeat the method but add on a 100g mass.
• Repeat this three times for each measurement of mass, and then find the average of each set of results.

Middle

400

17.05

17.01

16.99

17.016

500

18.84

18.85

18.84

18.843

600

20.51

20.58

20.55

20.546

700

22.14

21.91

22.10

22.05

800

23.42

23.58

23.41

23.47

900

24.70

24.59

24.53

24.59

1000

25.51

25.53

25.57

25.536

 Mass on spring(g) Time Period Difference in time period 100 0.4005 - 200 0.58 0.1795 300 0.74 0.16 400 0.8508 0.1108 500 0.94215 0.09135 600 1.0273 0.08515 700 1.1025 0.0752 800 1.1735 0.071 900 1.2295 0.056 1000 1.2768 0.0473

Analysis

The two graphs above show how the time period of the mass-spring system is increasing as the mass on the spring increases. This proves my

Conclusion

However, all in all, the experiment went well considering the limitations of the apparatus we had. I could possibly have narrowed down the gaps between masses by using a 50g mass to obtain a larger set of results (150g, 200g, 250g etc.) but I believe using 100g pieces gives sufficient results to show how the time period of a mass-spring system changes as mass increases. A better timing system would, however, improve my results to make them more accurate at showing the time period. I could use a laser tripwire system linked to a computer, so when I wanted to start timing, I would start the oscillating system going, then when the wire was tripped for the first time, it would start the timer, and when it was tripped again it would stop the stopwatch. That way, I could accurately find out the time period for a mass-spring system.

To extend this work I could investigate the effect of the stiffness of a spring on the time period, using the same mass each time for different stiffnesses of spring but performing the experiment in the same way.

Bibliography:

• http://www.ncvs.org/vpt/equation/chapter4/
• http://www.infoline.ru/g23/5495/Physics/English/pend_txt.htm

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

Related AS and A Level Waves & Cosmology essays

1. Simple Harmonic Motion of a mass-spring system.

From the graph, we can obtain the value of force constant k as k = Nm-1 and the effective mass of the spring as it is the intercept on the m-axis. Procedure: A. Setting up the mass-spring system 1. The light spring was hung from the horizontal bar.

2. Investigating the relationship between the mass and time period in a spring-mass system

Measure the spring. Value record above the table of results. Decide weather elastic limit has been exceeded. (If values are different -->it has, If values are the same --> it hasn't) 19. Examine the graph. Check for any anomalous readings.

1. Measuring spring constant using oscilations of a mass.

meaning there could have been an error of reasonable value on it. Action Proposed To Minimise Errors To minimise these errors I could: * Use a laser beam as a fiducial marker that would count the number of oscillations and give me a accurate value of T.

2. What factors affect the period of a Baby Bouncer?

; * The combination of these two components which corresponds to the output (or the bouncing behaviour). This would be a relatively simple experiment to conduct by using a load cell (attached to the ceiling) to record the loading of the spring and harness: using two force platforms mounted in

1. Investigating the Vertical Oscillations of a Loaded Spring.

Therefore, the spring and the weight accelerate upwards/downwards and the oscillation begins. The acceleration can be calculated with Newton's Second Law But in my case, the acceleration can be defined as this: If we used a larger mass, the same forces would be seen, but lower down.

2. Investigation into factors affecting the time period for oscillations in a mass-spring system.

Bear in mind the amplitude cannot be larger than the extension caused by the smallest mass applied to the spring as this would not allow the system to oscillate properly. Elastic limit of spring; If the spring has been extended past its elastic limit it will have become permanently deformed

1. Investigating factors which affect the period of an oscillating spring

Farid Din 11LO Apparatus * Stand and clamp * Metre rule * Stop watch * Spring * 9x100g masses * 1x100g hooked mass Method I will first collect the apparatus and put on my safety goggles. I will then set up my stand and safety clamp with my metre rule

2. I intend to investigate whether any correlation exists between the wavelength of light exerted ...

is apparent that the voltage is stable onwards from the 100th data point. To make data handling an easier task, the data set will be trimmed past this point. I will take the region of the graph that is roughly linearly increasing, and calculate the gradient of it from its

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to