• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  22. 22
    22
  23. 23
    23
  24. 24
    24
  25. 25
    25
  26. 26
    26
  27. 27
    27

Applied Science

Extracts from this document...

Introduction

APPLIED SCIENCE ASSIGNMENT 2 TASK 1(A) Experiment on diffusion Aim: to determine diffusion (in ordinary tap water). Apparatus: beaker, potassium permanganate and tin foil. Method: I filled the beaker (half) with ordinary tap water and I released the potassium permanganate into it from the thin foil. Results: within a matter of a few seconds to one and half minutes, the whole water turned purple beginning from the area where the potassium permanganate was dropped. Conclusion: this experiment showed the movement of potassium permanganate molecule all around the beaker of ordinary tap water thereby, concluding the fact that molecules would move from a place of higher concentration to a place of lower concentration (diffusion) passively. Experiment on osmosis The aim of this experiment is to determine osmosis. Apparatus: test tube, potato tuber, electronic balance, watch glass, different concentrated solutions of sucrose: 0.003m, 0.006m, 0.125m, 0.25m, 0.5m, 1m and water. Method: I cut the potato in six equal parts and I weighed them using the electronic scale. I then put each piece in different solution and I left them for 24 hours and I weighed them again. Result: Concentration of solution Original weight Weight after 24 hours water 11g 12.62g 0.003m 11g 12.21g 0.006m 11g 12.35g 0.125m 11g 11.91g 0.25m 11g 11.64g 0.5m 11g 10.36g 1.0m 11g 8.49g The result shows that osmosis actually took place in the experiment. As the concentration increased, the percentage of the weight difference decreased Conclusion: The experiment shows that the potato cells increase in mass in solutions with a high water concentration and decrease in mass in solutions with a low water concentration. This experiment helped me find out that osmosis occurs between two liquid substances with a partially impermeable membrane, and that the higher the water concentration is the larger increase in grams (mass). This means that the percentage will also be higher, increasing with the grams. TASK1 B Homeostasis means keeping a constant environment around the cells of the body. ...read more.

Middle

Conversely, if red blood cells are exposed to 0.9% sodium chloride, the cell will remain unchanged because this solution is isotonic to human cells. Also a 5% solution of glucose is isotonic to human cells. The lower percentage is needed with sodium chloride to produce an isotonic solution, in part because sodium chloride ionizes in solution more completely and produces more solute particles than does glucose. The concentration of water and solutes in the plasma is maintained within a very narrow range because if the plasma water concentration rises, the plasma becomes more dilute then the intracellular fluid within the red blood cell, then water will move down its concentration gradient across the membrane and into the red blood cell. This may cause the red blood cells to swell and bust. In this situation, the plasma is said to be hypotonic. On the other hand, if the plasma water concentration falls so that the plasma becomes more concentration than the intracellular fluid within the red blood cells, the plasma becomes hypertonic. Water passively moves by osmosis from the blood cells into the plasma and shrinking of the cells occur. One of the main functions of blood in human is to maintain an isotonic internal environment. This removes the problems associated with water loss or excess water gain in or out of cells. Paramecium and other single called freshwater organisms have difficulty since they are usually hypertonic relative to their outside environment. Therefore water will tend to flow across the cell membrane, swelling the cell and eventually busting it. This is not good for any cell. The contractile vacuole is the paramecium is response to this problem. The pumping of water out of the cell by this method requires energy since the water is moving against the concentration gradient. Task 3 Chemical reaction Chemical reaction is change in which one or more chemical elements or compounds react to form new compounds. ...read more.

Conclusion

Looking at the table, we can see that alveolar air is higher in oxygen than deoxygenated blood so diffusion will take place. Oxygen will diffuse from the alveolar into the deoxygenated blood and carbon dioxide will diffuse from the deoxygenated blood into the Alveolar air as partial pressure of carbon dioxide in the deoxygenated blood is higher than in the alveoli. At (1o.ooo) The table shows that oxygen will diffuse from alveoli into the deoxygenated blood and into the alveolar air. This is possible because the partial pressure of carbon dioxide in the deoxygenated blood is higher than that of the partial pressure of carbon dioxide in the alveolar air. Consequence For every 5000m increase in height, air pressure will be halved according to the task. At ground level, the partial pressure oxygen and carbon dioxide in the air we breathe will be normal. But as we begin to go up to 5ooom, we feel breathless and we will be more breathless if go up to 10.000m. In this case diffusion tends to be slower. The calculation of concentration gradient of O2 and Co2 at ground level. The partial pressure of oxygenated blood and extracellular fluid concentration gradient is O2: 14 .00-5.33=8.67kpa and C02: 6.00-5.33=0.67kpa. At 5000m O2 C02 Alveolar air: 7 take away from deoxygenated blood: 2.67. Deoxygenated blood: 3.00 take a way from alveolar air: 2.67. So 7 - 2.67 =4.33kpa. So 3.00 -2.67 = 0.33kpa. At 1000m O2 C02 Alveolar air: 3.5 take away from deoxygenated blood:1.34. Deoxygenated blood: 1.5 take away from alveolar air: 1.34. So 3.5 -1.34 =2.16kpa. So 1.5 - 1.34 =0.16kpa. Looking at the figures, concentration gradient reduces as one goes up. Therefore the rate of diffusion will decrease considerable as one goes up and this will affect one's ability in producing energy since the rate of diffusion of O2 is going to be slowed down and if you go higher than 10.000m you will run out of oxygen and eventually you will collapsed. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Marked by a teacher

    Investigating respiration of maggots

    5 star(s)

    As stated earlier enzymes are complex 3-dimensional globular proteins. The active site, which is usually a cleft in structure, contains some amino acids that carry out the breakdown of a substance. H R O Diagram showing structure of a simple N C C amino acid H OH The enzyme is in the tertiary structure of a protein.

  2. Affect of sucrose concentration on the rate of respiration.

    Looking at the result obtained for 8 grams of sucrose, the volume of gas collected seems just slightly of the general curve. This can be seen on the graph. This slight difference in the volume of gas collected may be due to an error when carrying out the experiment.

  1. DETERMINING THE WATER POTENTIAL OF A POTATO TUBER CELLS USING THE WEIGHING METHOD.

    Lab coat 1 To protect the body from any harm The lab rules require that we wear lab coats for any experiment small * Not too big so there are no accidents such as tripping or the sleeves dipping into the solutions.

  2. A2 coursework- The effects of bile salts on digestion of fat

    lipase will not be breaking down the fat as quickly and so temperature will become an independent variable in this experiment. I found from my preliminary work that using a water bath worked well and it will keep the temperature more constant then a Bunsen burner which will also be

  1. WHAT EFFECT DOES SUBSTRATE HAVE ON THE RATE OF RESPIRATION IN SACCHAROMYCES CEREVISIAE?

    Adding more enzymes will have no effect. For my experiment, I am testing the effect of different substrates on the rate of respiration and thus I shall ensure that the concentration of substrates are not the limiting factor, by keeping them in excess otherwise my results will not be considered to be reliable.

  2. Investigating the Effect of pH on Enzymes

    flask and this is not an accurate measurement of the volume of water in the flask. Once this point has been reached the stopper was placed on top and the flask labelled with the concentration, which was 0.005% of the conc.

  1. To find out how different concentrations of sucrose solution affect the incipient plasmolysis of ...

    * Labels - used to place on each McCartney bottle to distinguish between different root vegetables to prevent confusion. * Size 6 Core borer - used to cut and remove a cylinder shaped piece of each different root vegetable required for the experiment, I will use the same size core

  2. An experiment to investigate the effect of enzyme concentration on the rate of milk ...

    This way, after the preliminary, we can design a far more accurate experiment to gain far better results which we can then easily analyse. Preliminary apparatus: - Test tubes x5 - Test tube rack x1 - Solutions of --> Lipase enzyme (2cm� for each test)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work