• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Beetroot experiment

Extracts from this document...

Introduction

Nanye Osae-Asare BEETROOT REPORT PLAN The aim of the following experiment is to use beetroot to examine the effect of temperature on cell membranes and relate the effects observed membrane structure. Hypothesis I predict that upon heating beetroot to a certain temperature colour will leak out and give out a reading on a colorimeter. Scientific Background Beetroot is a vegetable which is used greatly in food making and an important ingredient in recipe books. It is usually recommended that you don't remove the outer skin of the beetroot and don't cut off all the stalk and root if you want to avoid getting lots of red dye in the cooking water. Beetroot contains red pigments called betalains, located within the cell vacuole. Normally the pigments cannot pass through membranes but they leak out when the beetroot is cooked or put in alcohol. The beetroot is protected by a cell membrane. The cell membrane functions as a semi-permeable barrier, allowing a very few molecules across it while fencing the majority of organically produced chemicals inside the cell. Electron microscopic examinations of cell membranes have led to the development of the lipid bilayer model (also referred to as the fluid-mosaic model). The most common molecule in the model is the phospholipids, which has a polar (hydrophilic) ...read more.

Middle

2 boiling tube racks 9. Crushed ice 10. 8 Boiling tubes 11. Thermometer(one per water bath) 12. Colorimeter to measure amount of colouration produced. 13. Cuvettes 14. Stop clock 15. Distilled water 16. Pipettes for measuring 2cm3 and 5cm3 17. Small measuring cylinders. Procedure 1. Cut sections from a single beetroot using a size 4 cork borer. Cut eight, 1cm length slices from these sections. Be careful not to spill beetroot juice on skin or clothing since it stains very badly. 2. Place the slices in a beaker of distilled water. Leave overnight to wash away excess dye. 3. Next day, place eight labelled boiling tubes each containing 5cm3 distilled water into water baths at 0oC, 10oC, 20oC, 30oC, 40oC, 50oC, 60oC and 70oC. Leave for 5 minutes until the water reaches the required temperature. Place one of the beetroot sections into each of the boiling tubes. Leave for 30minutes in the water baths. 4. Decant the liquid into a second boiling tube and remove beetroot sections using a technique that does not squeeze the slice e.g. spear with a pointed seeker. Shake the water/solution to disperse the dye. 5. Switch on the colorimeter and set it to read % absorbance. 6. Set the filter dial to the blue/green filter. ...read more.

Conclusion

Colorimeter reading was lowest at 0oC 4. There was a significant rise in colorimeter reading from that at 50oC and 60oC. Explanation for results 1. Colorimeter reading stood for the amounts of betalain solution that passed through the cell membrane of the beetroot. As temperature increased, so did the size of pores in the membrane which allowed more and more betalain to escape from the cell. This supports the fact that temperature and colorimeter reading was directly proportional. 2. At 70oC the pores in the beetroot's were open the widest allowing the most betalian solution to leave the vacuole through the cell membrane. This explained why the colorimeter reading was highest for the beetroot tat was heated in the 70oC water bath. 3. At 0oC, the low temperature causes the pores to constrict and less amount of betalian solution is allowed to pass through the cell membrane. Since less amount of betalain is allowed to pass through, this means that colorimeter reading will be low. The results show that this was indeed the case. 4. From 0oC to 40oC, the molecules of the betalin solution possess relatively the same amount of energy. From 50oC betalin molecules have acquired a greater amount of energy and are free to move. This combines with the effect of temperature on the cell membrane pores to allow a greater than usual amount of betalin solution to leave to cell via the cell membrane. Evaluation 1. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Here's what a teacher thought of this essay

3 star(s)

Overall, this report of an investigation into the effect of temperature on the permeability of biological membranes is well-structured with a fair degree of supporting theory. Most of the key areas are covered in a logical order allowing the reader to follow the scientific process. There are, however, a number of weaknesses that would need to be addressed before submitting this as A'Level coursework. [1] The hypothesis needs to refer to the relationship between IV and DV; [2] The introduction needs to be wholly focused on the area of biology under investigation - membrane structure and effect of heat on permeability; [3] Control variables need to be discussed in full with the aim of increasing the validity of the results; [4] The results themselves need to be discussed in the light of sound biological facts with references to previous work by other biologists on the same hypothesis.

Marked by teacher Ross Robertson 15/04/2013

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Marked by a teacher

    The Effect of Ethanol Concentration on the Permeability of Beetroot Cell Membranes to Betalain

    3 star(s)

    o I intend to have a staggered start to the experiment to give time for me to put all the cylinders in the test tubes and remove at the same time afterwards too; I will wait 15 secs in between each boiling tube.

  2. Marked by a teacher

    Beetroot experiment. Aim: To investigate how the temperature affects the permeability of beetroot cells ...

    3 star(s)

    * Place the 1 beetroot samples in a beaker of distilled water, leave them for 5 minutes to wash away any excess dye, use a stopwatch to check the time. * In the meantime collect test tubes and fill them each with 5cm3 of distilled water and label them with

  1. Permeability of Cell Membrane in Beetroot Cells

    6. Using a ruler and a scalpel, cut 10 beetroot pieces to lengths of 2cm. 7. Place the 2cm pieces of beetroot into a sieve and rinse under cold, running water to remove excess pigment that was released during-free hand sectioning.

  2. Investigation of the effect of adding different concentrations of NaCl to an enzyme-substrate (amylase-starch) ...

    Once the desired colour, see step 14, is reached then stop the timer and record the time. 23. Repeat steps 11-21 for each of the different concentrations of NaCl. 24. Repeat all the steps for each run of the experiment 3 times to obtain a reliable and dependable average set of results.

  1. An experiment to find of the isotonic point of root vegetables cells in contents ...

    Also will be used label the water and 1Molar sucrose solution beakers. This will prevent my results from becoming mixed up. Will also be used to label the pipettes. * Scalpel- This will be used to cut the root vegetable to the accurate and appropriate length, this will minimize the

  2. Does ethanol causes greater inhibition of pig liver catalase than of yeast catalase

    I have a way to stop this but I will talk about that later. Evaluation Reliability I think my reliability of my data was quite good as you can see from the range of repeats at each concentration. They are all in very tight around the mean result.

  1. The effect of different temperatures on the movement of maggots.

    Justification -A glass tube will be used to restrict the maggots movement as it is random, if a piece of paper was used and the maggot was allowed to move freely it would move in random directions making the distance extremely difficult to measure so you would not know when

  2. The investigation to find the effect of glucose concentration on fermentation of yeast.

    All of the enzymes are form of protein and protein molecules are amino acids. Therefore as the temperature increases the rate of reaction also increase. The rate of reaction could be calculated by timing the time taken for a color change to take place.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work