• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Building a hovercraft with household objects.

Extracts from this document...

Introduction

Building a hovercraft with household objects.

Abstract

        The coefficient of static and kinetic friction between a board and the ground is very high.  Therefore trying to slide this board across the ground would be quite difficult.  It is thought that if there is a pocket of air between the board and the ground, the coefficient of friction will go down, therefore the force due to friction also will, and the board will be moved easier.  

        Although the force of friction is essentially impossible to completely get rid of, it can be minimized substantially.  With this pocket of air between the board and the ground, the board will glide above the floor with very little friction.  This device would be known as a hovercraft, because it is “hovering” above the ground.

Purpose

        To build a functioning hovercraft, efficient enough to carry the weight of a person using household objects.

Design

        The hovercraft will be built using only materials that can be found in the typical Muskokan home.  A leaf blower will be used to supply the airflow, a piece of plywood will serve as the base, and a tarp will be used to bladder the air, and to pressurize limit the airflow.  Duct tape, industrial staples, and spray adhesive will be used to hold the tarp to the plywood.  

Materials

  • 16 square foot sheet of 3/8 inch thick plywood
  • Large industrial tarp
  • Leaf Blower
  • Frisbee
  • 2 inch, 1/4-20 Bolt
  • 1/4-20 Nut
  • 1 Large washer, 2 small washers
  • Electric saber saw
  • Razor knife
  • Staple gun
  • Duct tape
  • Spray Adhesive
  • Silicon Caulking
  • Marker
  • 2 Foot string
  • Hammer
  • Extension Cords
  • Stool
  • Measuring tape
  • Wrench
  • Ratchet
  • Drill
...read more.

Middle

Duct tape the edges of the tarp that are folded over onto the plywood down so that they are airtight.  Then cover the entire top of the board with duct tape as to prevent air leaks.  Place the leaf blower on top of the pipe attachment.  Turn the leaf blower on, let the bladder (tarp) fill up, look, listen and feel for any air leaks, if there is any, patch them up with some duct tape.

Observations

        After building the hovercraft, although the original model was a success and worked properly and as planned, there were a few problems that would arise.  The sliding of the craft on the ground, combined with the pressure the air put out, caused the bottom of the tarp to have scratches, holes and rips.  These holes and rips caused the air that was being held in by the bladder or tarp to escape.  The escape of the air reduced the pressure of the air coming out through the holes that were put in the bottom for the planned release of air, this lessened the applied force, and the hovercraft did not stay “up” properly.  These tares were easily patched up with duct tape.  

        Another problem that was encountered was the insufficient adhesiveness of the duct tape.  The duct tape was much strong enough to hold the tarp down

...read more.

Conclusion

In order for the force to completely counter the force due to gravity, the force must be applied completely perpendicular to the surface of the hovercraft, and disperse itself evenly.  In order for the force upwards to hit the hovercraft at a 90° angle, the hovercraft must be parallel to the ground.  In order for the hovercraft to be parallel to the ground, the weight on top of the device must be in the center.  Should the force hit the base at an angle, the force will have a horizontal component.  If the force has a horizontal component, it will not hit the base evenly and will cause the craft to tilt.  If the craft tilts then one side of the circle will touch the ground, causing the friction to be in effect again. Thus, defeating the purpose of the hovercraft.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Fields & Forces section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Fields & Forces essays

  1. Peer reviewed

    Investigating the forces acting on a trolley on a ramp

    5 star(s)

    Using to the equation of motion; v2 = u2 - 2as (where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the distance), it was possible to find the acceleration along the slope by rearranging the formula and plotting a graph.

  2. Peer reviewed

    Determination of the acceleration due to gravity (g)

    4 star(s)

    error is : 3% + 2.8% = 5.8% g = 9.375 +/- 5.8% ms-2 The percentage error value of 5.8% is unsatisfactory. This high percentage error indicates experimental errors. The percentage difference for the experiment can be calculated as: % different = the actual value - the value measured /

  1. Measuring The Constant g; The Acceleration Due To Gravity

    clamps tightly with a knot to provide a strong pivot for the swing. 3) Use some Plasticine to make a ball approximately the size of a ping pong ball, and mould it around the end of the string , maintaining the ball shape, with the string now simply going inside its centre.

  2. Experiment test for F = m2L by whirling a rubber bung (centripetal force)

    is independent of L and ? ? is depending on the ratio of the mass of rubber bung to the mass of the screw nuts. 4. Centripetal force = m?2L sin ? ? m & M are constant ?

  1. Objective To find the acceleration due to gravity by means of a simple ...

    length L/m 1.251 1.127 1.027 0.927 0.827 0.10 0.11 0.11 0.12 0.13 Average value of : = = 0.114 The value of g with precision is ( 9.52 0.11 ) ms-2 Compare: The standard value of g = 9.81 ms-2 The values gained from the graph g' = 9.52 ms-2

  2. New Technological Advances in Wing Design

    The fan sucks the air from the top of the wing through 10 million holes in the titanium panel keeping the air flow over the wing constant, and increasing the lift-to-drag ratio by 10%.

  1. Lab Report - In this lab report, it will describe the weight of the ...

    Locate the 55 cm � 0.05 on the scale of the ruler and attach the bob.

  2. In this experiment we are investigating the effects that Gravity has on Objects.

    Light gates were used in this case as they are incredibly precise and accurate this eliminates human error. The light gate works by passing a laser beam between the two sensors and as an object passes through it determines how much of the beam was cut off and therefore works out the velocity.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work