• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Characteristics of Ohmic and Non-Ohmic Conductors.

Extracts from this document...


Characteristics of Ohmic and Non-Ohmic Conductors.



Conduction takes place in solid matter of certain materials where energy can be transferred from atom to atom. A conductor is a material that allows an energy transfer of this nature to take place. All metals are good conductors of electricity, which is why all circuits contain mostly metal wires and components. When energy is supplied to one part of a conducting wire, the electrons in the wire move from one atom to the next, producing an electrical charge.  Semi-conductors are elements such as Silicon and Germanium, which do not conduct at low temperatures, and whose conductivity increases with the temperature.

Current, Voltage & Resistance

Current electricity is the flow of charged particles through a circuit. In all dry conductors, the charged particles are electrons, therefore the charge is negative. The electrons in a circuit always flow from the negative terminal of a cell to the positive terminal. the same current flows through any given point in a series circuit, but in a parallel circuit, the current divides in a manner that the current in each of the separate branches sums up to the current in the main circuit. The size of the current in a circuit is measured in Amperes, or  “amps” using an ammeter.

...read more.


The relationship between current, voltage and resistance

The relationship between current, voltage and resistance is expressed in Ohm’s Law, named after the physicist who discovered it. In the year 1826, George Simon Ohm conducted some experiments regarding current in conductors. As a result of these experiments he arrived at the conclusion that the current flowing through a metal wire is proportional to the potential difference across it (providing the temperature remains constant).

Ohm’s law simply translates to the equation:

V = I x R


Voltage = Current x Resistance.


Ohm’s law applies to metal conductors as well as certain other materials, and is obeyed provided that, not only the temperature, but all physical conditions remain constant. For example, the resistance of certain conductors will vary if they are bent or placed near a strong magnetic field. Certain conducting materials disobey ohm’s law entirely. These are mainly semiconductors and gases.

Conductors which follow ohm’s law are called Ohmic conductors, while those that disobey ohm’s law are known as Non-ohmic conductors.

Ohmic conductors

Ohmic conductors are most easily identified by a graph plotted for the change in voltage against the change in current. These “V-I graphs” for ohmic conductors are seen as a straight line passing through the origin. This indicates that the increase in voltage is proportional to the increase in current, and thus indicates that ohm’s law is obeyed.

...read more.



The energy band theory

The key difference between semiconductors and conductors is that a conductor’s conductivity decreases with an increase in temperature, whereas a semiconductor’s conductivity increases with an increase in temperature. At any temperature above absolute zero, there is a possibility that an electron in the lattice will be knocked loose from its position, leaving behind a deficiency called a “hole”. If a voltage is applied, then both, the electron and the hole can contribute to a small current flow. As the thermal energy of the electrons increases, they breach the “hole” present in the semiconductor into what is called a conduction band. Thus, unlike with metals, in semiconductors, the resistance decreases with an increase in temperature. The conductivity of a semiconductor can be modeled in terms of the energy band theory. The theory suggests that at ordinary temperatures there is a possibility that electrons can reach the conduction band and contribute to electrical conduction.

Intrinsic and extrinsic semiconductors

The term intrinsic distinguishes between pure semiconductors, and extrinsic (doped) semiconductors.

The conductivity of semiconductors such as Silicon (Si) can be increased by adding small, controlled amounts of impurities that have roughly the same atomic size that the semimetal itself. This process of adding impurities to increase conductivity is known as doping.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    If I ignore my anomaly and assume that the graph continues as it is I would image that at one point it would even out and the resistance would stop decreasing. This would either be at the point of no resistance because after this the resistance would be going into

  2. Investigating the effect of 'length' on the resistance of a wire

    doubling the number of collisions of electrons with metal atoms as well. This proves that my results support the prediction that I have made in the planning section. In graph No2 most of the points lie on the line of best fit which means that my results were considerably accurate.

  1. Investigation into the resistance of a filament lamp.

    Prediction: I predict that by increasing the resistance we will also increase the temperature of the filament lamp. Also the filament is not an ohmic conductor. This is because we know that at high temperature the ions have more kinetic energy then they would have if the temperature was low,

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    Some substances such as the metals cannot be used as solids for electrolysis. Although they are good conductors, when they are solid they do not have the free electrons that are needed for electrolysis because they are solid but they can be used in electrical circuits even though they are solid.

  1. The electrolysis of copper from copper sulphate solution

    I have found that when the concentration of the copper sulphate solution is changed, then the current will be affected and therefore will also change. This means that the Quantity of Electricity and the Moles of Electrons will also differ as an affect of the change of concentration, it can be said that this is a chain reaction.

  2. resistivity if a nichrome wire

    So it had an absolute error of 0.01 as this was the ammeters accuracy. To calculated the percentage error for the current as follows: 0.01 x 100 = 4.17% (3 s.f) Therefore the percentage error for the current is 0.24 4.17 % 0.24 Voltage error Absolute: I first work out the voltage absolute error.

  1. Characteristics of Ohmic and non-Ohmic Conductors.

    As voltage increases, current increases too. This is because as the voltage increases, more electrons have the energy to flow through the conductor, causing the current to increase simultaneously, (provided the temperature of the conductor remains constant). Voltage (V) V I Current (I)

  2. Investigating how temperature affects the resistance in a wire

    To combat this problem, the experiment was conducted at room temperature, which means that there would not have been any significant changes in room temperatures. Heat from other sources can also directly affect the temperature of the water bath, so to combat this problem it is kept constant with the

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work