• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

Chemistry (Salters) Open Book 2008

Extracts from this document...


An ?-particle consists of 2 protons and 2 neutrons, identical to a helium-4 nucleus. During ?-decay, the atomic nucleus emits an ?-particle, which produces an element with 2 less protons and 2 less neutrons. In �-decay, a neutron from the nucleus is converted into a proton and an electron. The electron is emitted from the atom as a �-particle. As the electron has a very low and negligible mass, the new element formed has the same mass number as the parent atom. � -decay creates an element with a proton number 1 higher than the parent atom. Nuclear fission reactions involve an atom absorbing an initial slow moving neutron, leading to the atom splitting into 2 different elements. The products formed are therefore dependable on the way in which the atom is split. This process differs from radioactive decay; which requires no initial energy input and produces a single new element, differing chemically from the parent atom by the subatomic particles emitted in the ? or �-particle emission. Hydrogen and Helium are the two lightest elements in the periodic table. ...read more.


"If an atom of Uranium-235 is given sufficient energy through the absorption of one neutron, it enters an excited state and beings to oscillate. When the oscillations become unstable, the nucleus splits into two similar nuclei of medium mass, emitting more neutrons in the process." The neutrons emitted from the nucleus can cause further emissions in other nuclei, producing a chain reaction. To control nuclear fission reactions, the nuclear reactor contains a graphite moderator and control rods, made from a boron-coated steel. The graphite moderator slows down the fast moving neutrons so they can undergo nuclear fission. The control rods are able to absorb neutrons. When the rods are pushed entirely into the nuclear reactor, they absorb all the neutrons present, meaning no nuclear fission reactions can be initiated and all reactions stop. When the control rods are moved partly in and out of the reactor, they can control the rate at which fission reactions occur. Nuclear reactors are also controlled with the presence of Uranium-238, which does not undergo fission in the reactor and absorbs neutrons, interrupting the chain reaction. ...read more.


The byproducts of nuclear fission are radioactive and remain so for significant amounts of time, for example Plutonium-239, which has a half-life of 24,110 years. For fusion reactions to happen, the particles must form a hot ionised gas called plasma. Once the temperature is high enough, a plasma of positive ions in a sea of delocalised electrons is created. On earth, this is very difficult to create as it requires extremely high temperatures. In a fusion power station, the hot plasma is contained within a tokamak container made from carbon fibre. The plasma comes into contact with the walls at the bottom of this container to pump away excess helium ions. However, this causes the carbon tiles to be eroded by deuterium or tritium ions and neutral species, causing the formation of hydrocarbons, 1 - 3 carbon atoms in length. As these hydrocarbons are bombarded with protons, they form reactive radicals which combine to form hydrocarbon films. This causes problems for the reaction as they trap tritium and deuterium ions, stopping their circulation in the plasma and preventing energy production. Also, if the film gets thicker it will flake and form dust particles, which reduces the purity and performance of the plasma. ?? ?? ?? ?? Page 1 of 12 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. Investigating the rate of reaction between peroxydisulphate(VI) ions and iodide ions

    This will create more accurate and consistent results. Place this into the water bath. See Figure 3.1 below. Table 3.3. A table to show the different concentrations that make up each mixture Mixture Test Tube Boiling tube Volume (cm3) of KI(aq)

  2. Investigating how concentration affects rate of reaction

    was placed straight onto the table it would be much harder to see when the solution had turned colourless. I also conducted a pre-test to trial my method for investigating how temperature change affects the reaction rate. I had originally decided to monitor only the temperature of the water bath heating my solutions in boiling tubes.

  1. Double Displacement Reactions

    Clear 36 Na2CO3 Zn(NO3)2 Yes White Clear 37 Na2CO3 K2CrO4 No Yellow 38 Na2CO3 FeCl3 Yes Red Orange 39 Na2CO3 NaOH No Clear 40 Na2CO3 MgCl2 Yes Blue Clear 41 Na2CO3 NaC2H3O2 No Clear 42 Na2CO3 (NH4)2SO4 No Clear 43 Na2CO3 Al(NO3)3 Yes White Clear 44 Na2CO3 Pb(NO3)2 Yes White

  2. Open-Book Paper: Radioactive Decay, Nuclear Fission and Nuclear Fusion

    neutron, exciting the nucleus, causing it to oscillate and split into two smaller nuclei. This process releases more neutrons, causing more nuclei to split, and so on. This is shown in Fig. 211 with Uranium-235. The energy produced by nuclear fission, by E = mc2, is 3.2x10-11 J per fission.12

  1. Hydrocarbon fuels

    Catalytic cracking is a Carbo Cation mechanism. It uses catalyst: 'zeolite' at slight pressure- 4/5 atmospheres to make more fuels. It also makes 'aromatic' hydrocarbons. Shape selectivity by a zeolite catalyst - separation of isomers by a molecular sieve The advantages of using fossils is that very large amounts of electricity can be generated in one place using coal, fairly cheaply.

  2. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    nitrate, Co(NO3)2.6H2O, solid, aqueous o Risks: HARMFUL, OXIDISING, HARMFUL if swallowed, causes sensation by inhalation and skin contact, strong oxidising agent o Dangerous with: Flammable materials o Disposal: Dilute with water, pour down foul-water drain o Nickel (II) chloride, NiCl2.6H2O, solid, aqueous o Risks: HARMFUL; HARMFUL if swallowed; may cause


    elements until it reaches elements with a mass of sixty this is when the star has reached the end of its life span.

  2. Chemistry open book paper - Nuclear Fission and Fusion

    The emission of these neutrons can cause further fission in other nuclei, thus producing a chain reaction. Fission of heavy elements is an exothermic reaction which can release large amounts of energy both as electromagnetic radiation and as kinetic energy of the fragments.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work