• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Choosing a light source

Extracts from this document...

Introduction

Choosing a light source

Task 1:

Domestic  

  • Filament light

image13.png

  1. Coiled tungsten filaments are the metal wires that glow brightly when electricity flows through them.
  2. Connecting wires are the wires that carry electricity from the bulb's electrical contact to the filament.
  3. Electrical contacts - the metallic base of the bulb, which connects to the electrical contacts of the lamp when the bulb is in the lamp.
  4. Glass envelope - the thin layer of glass that surrounds the light bulb mechanism and the inert gases.
  5. Glass fuse enclosure - glass that insulates the bulb's fuses - located in the stem of the bulb.
  6. Mixture of inert gases at low pressures - the bulb is filled with inert (non-reactive) gases.
  7. Screw cap - the threaded base of the bulb that secures it to a lamp.
  8. Support wires - wires that physically hold up the filament.

Incandescent lamps or bulbs are the most commonly used type of lighting. When electric charge passes through any component with electrical resistance, electrical energy is transformed into heat energy. The Filament gets so hot (white hot) that it gives off light.

Almost all of the electrical energy is converted into heat rather than light. Standard incandescent bulbs only last about a thousand hours and must be regularly replaced. Incandescent lamps are most suitable for areas where lighting is used infrequently and for short periods, such as laundries and toilets.image14.png

Advantage:

They are inexpensive to buy and are available in a wide

range of shapes and sizes.

Disadvantages:

But their running costs are high and also they intend to burn out

If drop on the floor or been switch on without care.

Industrial/commercial

  • Halogen lights

Halogen lights are also similar to incandescent lamps. The halogens in the bulbs prevent evaporated tungsten from depositing on the glass bulb.

...read more.

Middle

image18.png

 (1) image19.png

(2)   image20.pngnm  

The kinds of values we can expect to obtain are small/ big.

Task 4:Plan

Introduction:

Aim:   I will be investigating 5 coloured light bulbs with each different power (watts)

Planning for the experiment

My Predication:

I predicted that, the higher the power the greater intensity, and the less intensity the lower the brightness. Also the further distance the light source an object the less brightness observed.

For period: 1, 2 and 3

I will be carrying out my investigation using the same method. I will also be investigating two different light sources in period 1 & 2. But in period 3 I will be doing the experiment for one light bulb pulse its graph; if I don’t finish in time during this lesson (the graph), then I will have to continuo with it in period 4.

These are the light bulbs am hoping to use for my investigation:

  1. Red  (has 3.5v)                      4) White (has 6.5v)
  2. Royal blue (has 2.5v)             5) Green (has 12v)
  3. Orange (has 6v)

My method of carrying out the experiment/s:

I will be collecting all the apparatus that I will be needing e.g. they are

Apparatus:

  1. 2x clamp stands with two clamps
  2. 1 meter ruler (wooden)
  3. 5 different light bulbs with different voltages (they are ready bering labelled with different colours)
  4. A light meter
  5. A power pack and some leads
  6. Small table lamp
  7. A black tube with two wires coming out of it (at the back)
  8. A lamp holder with connected from both ends  

Then I will set-up my apparatus as shown below:

After setting up my apparatus I will then choose to use either the light meter or the LDR (light dependent resistance) to start the experiment with. But

...read more.

Conclusion

Advantages:

Streetlights are bright at night.  Most of the streetlights are yellow coloured (sodium) and some are purple coloured (mercury). They last for the whole night, it run from about 250 volts.  They came in all different sizes and shapes.

Disadvantage:

It lets you see certain objects in yellow at night; the same principle applies to the mercury one.

Neon lights

Neon lights are small tubes with a power supply that runs from 12 volts.Electricity passing through the gas knocks electrons from their orbits. When the electron flies back into the orbit of its atom, energy in the form of a bright red light is released. This light energy is the source of the tube's glow. At both ends of the neon tubes there are metal electrodes and when you let a high amount of voltage to the electrodes, the neon gas ionises, and electrons flow through the gas. These electrons excite the neon atoms and cause them to emit light that we can see. Neon emits red light when energized in this way. Other gases emit other colours.  Neon lights reduce light pollutions by been designed small and run from small amount of volts.

Advantages:

Neon lights are small tubes with a power supply that runs from 12 volts. They are designed for places that are dark and also for cars too.

Disadvantage:

Neon lights only give out certain amount of light in different ranges of colours of the spectrum; therefore it’s not enough for us to see the colours of the objects very clearly.

Energy efficient lights

Energy efficient lights are smaller version of fluorescent lights. They are also designed for places where fluorescents tubes lights can’t fit.

The Advantages and Disadvantages for these types of light are the same to fluorescent tube lights (see above)

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Single Phase Transformer (Experiment) Report.

    (In these calculations the equivalent circuit parameters calculated and listed above are used, ? in these calculations will be considered as being zero) Voltage regulation = I'2 (R1 cos ?2 + X1 sin ?2) [x 100%] V1 = 2.72 (3.4)

  2. The aim of my investigation is to determine the specific heat capacity of aluminium.

    must be used. To find the specific heat capacity (c) the equation can be rearranged into the form, c= ItV m T Using my trial run results in which, Average I=4.01amps Average V=0.45 volts t=900 seconds Therefore E=ItV=37700J m=1kg T=36OC Therefore c=37700 (1x36)

  1. Electrical Properties of a Filament Lamp - Does a Filament Lamp Obey Ohm's Law?

    If the lamp obeyed ohm's law, the resistance would be the same. My results fully agree with my prediction. I knew that Ohm's law only applied when there is a constant temperature and I knew that a filament lamp does not provide these conditions.

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    * The apparatus and the circuit should be placed in order so that they do not fall. * The experiment can be repeated so that the results can be verified easily. * Precaution must be taken from the hot oil so that there are no burns.

  1. To Investigate How the Resistance of the Light Dependent Resistor Depends On the Current ...

    As the resistance of the LDR is so small, we need a fixed resistor to maintain the resistance in the circuit. If not, the current in a resistor will be too big and cause too much current flow through the LDR and it will be broken.

  2. Investigating The Characteristics Of A Light Bulb.

    Method List of equipment: * Power pack, which will be needed to increase the load of power. * Ammeter (at 10 amps) to measure the current. * Voltmeter (at 20 volts) to measure the voltage. * Rheostat, which changes the resistance in a circuit, and therefore changes the voltage and current in a circuit.

  1. The aim of the experiment is to verify the maximum power theorem and investigate ...

    As we need to increase the numbers of the blocks during the whole experiment, we should keep the way of increasing the numbers of blocks the same, for example, we may pile up the blocks throughout this experiment. In addition, beam balance is necessary in the experiment for measuring the masses, which have to be hung at the hanger.

  2. Energy Efficiency Experiments

    Output= kinetic energy+ heat+ sound. Useful= kinetic energy. Wasted= heat+ sound. Energy input = 0.1 x 9.81 x 0.24 = 23.544J Energy input= Mass x Gravity x Height Energy output = 0.5 x 0.1 x (2.22 ÷ 0.4)2 = 1.54J Energy output= 0.5 x Mass x Velocity²=0.5 x Mass (distance ÷ Time)² Useful energy output

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work