Counting cells using the pour plate method

Authors Avatar

AROOG KHAN

Unit 3: SCIENTIFIC INVESTIGATION

ASSIGNMENT TITLE: INDIVIDUAL INVESTIGATION

PLANNING

TITLE: COUNTING CELLS USING THE POUR PLATE METHOD

KEY

EDITED WORK                                    1ST DRAFT

INTRODUCTION:

In the start of this assignment, I was told to choose one of seven other experiments to do. I chose the Counting cells using the pour plate method because I find it much easier than the other ones. In addition, I have had past experience therefore; it should be straightforward. I also have more knowledge of it than the other experiments.

I will be testing the effects of various items on the growth of bacteria. I will investigate using the pour plate method in which I will be counting the cells of bacteria produced, of which are viable.

The pour plate method can be used to establish the amount of microbes/mL or microbes/gram in a sample. It has the benefit of not have need of earlier arranged plate, and is usually used to examine bacterial contamination of foodstuffs.

While using the pour plate method, a diluted specimen is pipetted in a sterile Petri plate, and next melted agar is tipped in and combined with the specimen. Using this technique permits for a bigger volume of the diluted specimen. This is normally in the choice of 0.1 – 1.0ml. This technique yields colonies, which produce colonies all over the agar, not only on the surface. Caution has to be taken with this technique to guarantee that the organism to be counted is able to resist the temperatures linked with the melted agar.

Dilution Factor

The dilution factor is a number used for getting the whole number of infected cells from the observed data.

Microorganisms are usually counted in the laboratory using methods like the viable plate count, where a dilution of a sample is plated onto an agar medium. Following the incubation, plates with 30-300 colonies per standard-sized plate are counted. This number of colonies was selected because the number counted is high enough to have statistical accuracy, so far low enough to avoid nutrient competition among the developing colonies.

Each of the colonies is supposed to have arisen from only one cell, but this may not be true if chains, pairs, or groups of cells are not entirely broken apart before plating. The sample has to be controlled so that it consists of a number of cells in the right range for plating. If the cell number is high, the sample is diluted; but if too low, the sample is concentrated.

Dilutions are carried out by careful, aseptic pipetting of a known volume of sample into a known volume of sterile water, buffer, or saline. This is mixed well and can be used for plating or further dilutions. If the number of cells is unknown, then a range of dilutions is usually ready and plated.

HYPOTHESIS:

I predict that the more the dilution is, the lesser the number of colonies.

VARIABLES:

I have considered the accuracy of my measurements and come to the conclusion hat the dependent variable is the aseptic technique, which in this case was E.coli. This is because I had to measure how much I had to put into each of the sterile distilled water bottles. I did not have to make many measurements but other than measuring, the E.coli and a sample of dilution into the next solution then transfer 1.0cm3 into the petri dish. Obviously, other events took place among these measurements.

Join now!

The independent variable was the Pasteur pipettes which I had to keep changing every time I used one so that my solutions will not get contaminated. My variables are continuous. This means that each time I done the experiment I had to do the same thing over again, therefore they are continuous.

APPARATUS:

  • Six universal bottles, or capped containers – each containing 9.0cm3 of sterile, distilled water
  • Twelve sterile Pasteur pipettes – plugged with cotton wool
  • 1cm3 plastic syringe, fitted with a silicon rubber connector, to attach to Pasteur pipettes
  • Six sterile Petri dishes
  • ...

This is a preview of the whole essay