• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

Design an experiment to investigate the effect of temperature on the movement of a pigment through a membrane

Extracts from this document...


Design an experiment to investigate the effect of temperature on the movement of a pigment through a membrane Hypothesis The tonoplast is the membrane that separates the vacuole from the rest of the cell. The membrane is selectively permeable and a phospholipid bilayer. The membrane is made up of phospholipids, which have a phosphate group and two fatty acid tails. The phosphate group is polar and hydrophilic, whereas the fatty acid tails are non-polar and hydrophobic. The fatty acid tails therefore try to get as far away as they can from the watery fluid in the vacuole and the watery cytoplasm, so the fatty acid tails point inwards and the phosphate heads point outwards. Also in the bilayer there are proteins, which can be intrinsic or extrinsic. Intrinsic proteins are proteins that span the full width of the membrane, whereas extrinsic proteins only go a small way into the membrane. The proteins provide structural support, act as carriers for water-soluble substances, can act as enzymes, form ion channels and they can act as receptors for hormones. Carbohydrate chains can join to the extrinsic proteins forming glycoproteins. These act as recognition sites. Carbohydrate chains can also join to the phospholipids forming glycolipids, this act as recognition sites and helps the stability of the membrane. Also there is cholesterol in the membrane this prevents leakage of water and ions from the cell, and therefore reduces the movement of the phospholipids, giving the membrane stability. This whole structure of the tonoplast is called the fluid mosaic model. This is because the phospholipids and proteins in the membrane are continuously moving and the membrane resembles a mosaic in appearance. Below is a diagram of the phospholipid membrane. (Source- http://fig.cox.miami.edu/Faculty/Dana/membrane.jpg) As the temperature increases the membrane becomes more fluid because the individual molecules have extra energy so they move around more. Furthermore at I think that the cholesterol molecules would also be affected by temperature, this would mean that the membrane would become even more fluid at high temperatures, because of the affect of cholesterol on the membrane. ...read more.


9.42 -3.42 11.7 2 13 9.42 3.58 12.8 3 16 9.42 6.58 43.3 4 3 9.42 -6.42 41.2 5 11 9.42 1.58 2.50 6 12 9.42 2.58 6.66 7 14 9.42 4.58 21.0 8 10 9.42 0.58 0.336 9 5 9.42 -4.42 19.5 10 6 9.42 -3.42 11.7 11 8 9.42 -1.42 2.02 12 9 9.42 -0.42 0.18 Sum ? x2= 113 ?(x2-x2)2= 172.896 = 173 (3sf) Variance= ? (x1-x1) 2 n-1 = 173 11 = 15.7272... = 15.7 (3sf) Standard deviation = V15.7 = 3.96 (3sf) t = x1 - x2 V s12 + s22 n1 n2 t = 89.2- 9.42 (4.282/12)+ (3.962/12) `= 28.15764.... = 28.2 Degrees of freedom= n1+n2 -2 = 12+12-2 = 22 Gradients of lines I have used the averages excluding the anomalies to calculate the gradient of different line segments on my graph. Gradient of line segment from 35�C - 45�C y2-y1 =90-97 = -0.7 x2-x1 45-35 Gradient of line segment from 50�C - 60�C y2-y1 =21-81 = -6 x2-x1 60-50 Gradient of line segment from 65�C - 80�C y2-y1 =2-10 = -0.53 x2-x1 80-65 Analysis I used results from pooled data of my biology class. This is because the more data that I have the more likely it is that my results are accurate. In my table I have highlighted the anomalous results and I have done two averages, one including my anomalies and one excluding them. This is to show the affect that my anomalous results have on my graph and on my results. My results show that as the temperature increases there is a lower transmission of light through the solution of water and pigment. My graph is a sigmoid shape. The graph showing the results including my anomalies has a steeper gradient at the top and bottom of my graph, whereas the one excluding my anomalies has a gentler slope at the top and bottom. ...read more.


I then cut each of the columns of beetroot into 4cm pieces, measuring them using a ruler to ensure that they were exactly the same length. To improve this I could use a more accurate way of measuring the length of the beetroot than a ruler, this is because it is hard to measure the length of the columns of beetroot with a ruler, since they are round and the ruler is flat, so you cannot see the ends of the beetroot exactly. Colorimeter 8 The colorimeter caused errors in the data produced. This is because after it had been used to measure the percentage transmission a few times, it had to be recalibrated therefore some of the samples had to be measured more than once to check that they were correct. However this is not a very significant error. To ensure that the colorimeter was correct I made sure that I used the correct filter, that the cuvette was clean and that I did not touch the clear side of the cuvette. Also I made sure that I regularly recalibrated the cuvette. To improve this I could have used distilled water to calibrate the cuvette so that it was completely clear. This would have improved the reliability by a small amount. In general the reliability of my experiment was very good despite these errors. This is shown by how high my t-test results were. Also my experimental technique was reliable enough for the results that I got to be accurate, so that the conclusions that I drew were correct. Nevertheless I did get some anomalous results these are: Temperature /�C 1 4 7 10 35 92 60 9 8 65 3 80 19 The reasons for these anomalies are that the beetroot pieces, because they are natural, have varying amounts of pigment in, causing differences in the results. Another reason for these anomalies is that the proteins denature at slightly different temperatures, this is why there is more variation in the results at the middle temperatures, when the proteins first start to denature. ?? ?? ?? ?? Vickie Hayton 12 FRE ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Exchange, Transport & Reproduction section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Exchange, Transport & Reproduction essays

  1. Marked by a teacher

    Biology coursework planning - the effect of lead chloride on the growth of cress ...

    5 star(s)

    It would also not be practical to plant the seeds so close together given that there is a large amount of space in the petri dish. Therefore, the remaining methods of distribution were tested in the preliminary work. There were many ways in which to plant the cress seeds in a grid.

  2. Marked by a teacher

    An investigation on the effect of temperature on beetroot membrane structure.

    4 star(s)

    This movement causes the structure to fall apart and increase the kinetic energy of betalains which increases the rate of diffusion of betalains out of cells. Independent variable (iv): Temperature of distilled water in the test tubes containing beetroot will be, placed in at room temperatureincubators of about 200c and

  1. Marked by a teacher

    The Effect Of Temperature On The Permeability Of The Cell Membrane

    3 star(s)

    This experiment will also help decide what range of temperature I should use so the experiment will be done at high/low temperatures, furthermore the experiment will help me in deciding in the size of the beetroot. In the preliminary experiment, I collected the equipment, which I would need such as, Beetroot, Scalpel, Stopwatch, Tweezers, Test tubes, and Thermometer.

  2. Marked by a teacher

    What is Type 1 diabetes

    3 star(s)

    As mentioned, pregnancy diabetes carries a greater risk of developing Type 2 diabetes later in life. It also means that there is an increased risk of toxaemia (blood poisoning) and high blood pressure during the pregnancy itself. NetDoctor BabyText - use your mobile phone to track your baby's developmental milestones during pregnancy.

  1. Marked by a teacher

    Effect of temperature on membranes

    3 star(s)

    bind to specific molecules and changes its shape to allow the molecules to be transported from one side to the other side of the membrane. Osmosis is the net movement of water molecules from a region of low solute concentration to a region of high solute concentration through a partially permeable membrane.

  2. Peer reviewed

    The comparison of antibacterial properties of herbal products and standard antibiotics

    5 star(s)

    * 2 sterile bottles- to empty the herbal products into. * Cotton wool- to wipe down the area with. * Matches- to light the Bunsen burner. * Sellotape- two strips per agar plate to hold them shut- Don't seal the whole way around as harmful pathogens could be produced.

  1. Peer reviewed

    "An investigation into the Respiration of Carbohydrate Substrates by Yeast."

    5 star(s)

    I predict this because the commercial purposes of Baker's and Brewer's yeasts are different and therefore special cultivations might have made the yeast better designed for one purpose than the other. Again a null hypothesis was also adopted; Null hypothesis two: 'There will be no significant difference between the amount

  2. beetroot experiment

    This is because the heater on water baths only starts working once temperature has dropped below what is required, and once the heater has started working, once again it causes the temperature to rise above what it is required, then the bath cools below the optimum temperature.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work