• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determination of the partition coefficient of ethanoic acid between water and 2-methylpropan-1-ol

Extracts from this document...

Introduction

Chemistry TAS Report 1. Experiment Number : 11 2. Date : 29/01/2008 3. Title : Determination of the partition coefficient of ethanoic acid between water and 2-methylpropan-1-ol 4. Aims/Objective : To determine the partition coefficient of ethanoic acid between water and 2-methylpropan-1-ol. 5. Introduction / Theory: If a solute is added to two immiscible solvents, A and B, in contact with each other, it is distributed between the two solvents and an equilibrium is set up between the solute molecules in solvent A and B. The ratio of the concentration of the solute in the two solvents is K = concentration of solution in solvent A / concentration of solution in solvent B where K is known as the partition coefficient or distribution coefficient. 6. Relevant Equations/Chemical Reactions Involved : (1) At dynamic equilibrium, CH3COOH (alcohol) <=> CH3COOH (aq) (2) Titration CH3COOH(aq) + NaOH(aq) � CH3COONa(aq) + H2O(l) 7. Chemicals : 0.2 M ethanoic acid 120 cm3 0.1 M NaOH 100 cm3 2-Methylpropan-1-ol (density = 0.805 cm3) ...read more.

Middle

45 cm3 of aqueous ethanoic acid and 25 cm3 of 2-methylpropan-1-ol 10. Observations : The solution changed from colourless to red at the end point. 11. Data, Calculation and Results : Room temperature : 14.5oC Volume of 2-methylpropan-1-ol : 25 cm3 K = concentration of acid in aqueous layer / concentration of acid in alcohol layer Volume of 0.2 M ethanoic acid / cm3 Volume of 0.1 M NaOH titre for aqueous layer / cm3 Volume of 0.1 M NaOH titre for alcohol layer / cm3 Partition coefficient , K 25 10.70 12.15 1.14 35 11.85 13.90 1.17 45 12.75 19.50 1.53 Average value of partition coefficient K = (1.14 + 1.17 + 1.53) / 3 = 1.28 12. Conclusion : The partition coefficient of ethanoic acid between water and 2-methylpropan-1-ol was found to be 1.28. 13. Discussion : 1. Shaking is necessary in step (2) as equilibrium state can be attained more quickly. 2. The partition coefficient varies with temperature because equilibrium constant (K) ...read more.

Conclusion

This assumption is valid as the concentrations of the two solvents are low. 5. Two successive extractions by using 25cm3 portions of solvent make a better interaction between two kinds of solutions than only one extraction during shaking. A better equilibrium is then set up, resulting a higher extraction efficient. 6. (1) Solvent extraction : By partition law, the KD can be found experimentally. The amount of the solute that can be extracted using solvent extraction can be predicted, instead of using other complex method. (2) Chromatography : It is used to separate and analyse mixtures, based on the difference in solubilities of the solutes in the stationary and mobile phases. At a given temperature, the Rf value of a solute is a constant for a given solvent Rf = Distance travelled by spot / Distance travelled by solvent 7. Error analysis : There are some possible errors, (1) Wrong determination of end point and burette's reading in titration. (2) The 100 cm3 separating funnel, which contains the two solvents, are not shaken well and thus dynamic equilibrium may not be reached.. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. Peer reviewed

    dDetermination of the partition coefficient of ethanoic acid between water and butan-2-ol.

    4 star(s)

    The aim of titration is to find the concentration of the solvent, but not the total number of mole in the solvent.

  2. Free essay

    Determining an Equilibrium constant

    - - - 29.34 29.30 29.60 29.33 Mass of ethyl ethanoate added /g - - - - 4.56 4.52 3.68 3.61 1.84 1.81 Mass of HCl(aq) added /g 5.19 5.12 5.25 5.06 5.15 5.07 5.21 5.18 5.12 4.96 Mass of water added /g - - - - - - 1.05 0.95 3 2.99 Apparatus and Reagents Used (Part B)

  1. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    160.67 6.22 Manganese (II) 306.33 3.26 (Table 3.7.1) To clarify these results, I have drawn a bar chart showing the value of for each different transition metal ion solution added, which is graph 3.7.1 on page 42. Unfortunately, these results are rather inconclusive. Only one of the metal ions (Iron (III))

  2. the partition coef of ethanoic acid between water and 2-methylpropan-1-ol

    Result Volume of 2-methylpropan-1-ol: 15 cm3 Volume of ethanoic acid / cm3 Volume of 0.1M NaOH titre for aqueous layer / cm3 Volume of 0.1M NaOH titre for alcohol layer / cm3 Partition coefficient K= 15 4.60 5.00 1.087 20 6.25 7.50 1.200 25 8.25 9.70 1.176 Conclusion The partition

  1. The Determination of rate equation

    diluted with 20cm� H2O. From this I can simply conclude that the reaction takes place quickly and further increasing concentration/ volumes would produce a faster reaction. This as a result would make it difficult to measure the exact point when a cloudy solution is formed (increasing the procedural error).

  2. Investigating how concentration affects rate of reaction

    Once the bromine has filled all of the binding sites on the phenol present in the solution, is reacts with the methyl orange indicator. This causes the orange colour to turn colourless. When I was varying temperature, I obtained an anomalous result.

  1. Aim To determination the partition coefficient of ethanoic acid between water and butan-2-ol.

    Therefore the amounts of aqueous ethanoic acid and 2-methypropan-1-ol need not be measured out accurately. 4. The following assumptions are made: a) The temperature of the mixture remained constant throughout the experiment. This assumption was valid as it was felt (by hand)

  2. How does the temperature of water affect the amount of dissolved oxygen it contains?

    SAMPLE CALCULATION: Set 1: 5oC c(S2O32-)= 0.250 mol/L v(S2O32-)= 25.4 ml or 0.0254 L n(S2O32-)= c x v = 0.000635 mol n(O2)= 1/4 n(S2O32-) = 0.25 x 0.000635 mol = 0.00015875 mol v(O2)= 0.20 L c(O2)= n/v = 0.00015875 mol/0.2 L = 0.00079375 mol/L c(mol/L)= c(O2) c(g/L)= c(O2) x M(O2)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work