• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determining the Concentration of Sulphuric acid

Extracts from this document...


Salters as Practical Assessment-Plan I am going to plan an experiment to determine the accurate concentration of sulphuric acid. It is thought to have the concentration between 0.05 and 0.15 moldm-3. I will be provided with a solid base which is anhydrous (powder) sodium carbonate (Na2CO3). To find the accurate concentration I will titrate the sulphuric acid against the sodium carbonate. The reaction following will take place: Na2CO3 (aq) + H2SO4 (aq) Na 2 SO4 (aq) + CO2 (g) + H2O(l)1 Deciding the Amounts Sulphuric acid has a concentration about 0.10 moldm-3 (half way between 0.05 and 0.15 moldm-3). I would like to use 25cm3 of sulphuric acid. This is because, it is not a wasteful amount and also it would reduce percentage errors because this is quite a large amount to use. It would be an ideal value to use. Furthermore, I will need to make up a standard solution from the solid base that I have been provided with, which is sodium carbonate. I would again ideally like to use 25cm3 of the standard solution per titre. This is because, the pipettes have the reading of 25cm3, which means the pipette is readily, available for this amount, therefore it is a sensible value. ...read more.


Wear safety goggles, gloves and also protective clothing. If in contact with eyes wash quickly with clean water. If spilt on skin wash intensely. If inhaled move to an area of fresh air. If spilt anywhere scoop as much as possible up. 5 Methyl Orange Indicator 2-3 drops Irritant Wear safety goggles, gloves and also protective clothing. If spilt, clean it up using a cloth and water. If gets in contact with skin wash the area thoroughly. If enters eyes wash with clean water. 6 Why my plan will Devise Reliable results My plan will devise reliable result because of many reasons. Firstly I am going to do a rough titre in my plan, which means I will have a rough idea of my titration, so when I do my real results I know when to add it drop wise, so that I won't overshoot the end point. Another reason why I won't overshoot the end point is because I am going to use a white tile so I can judge the end point more accurately. Furthermore, I am only going to add 2 or 3 drops of methyl orange indicator. This will make my results more reliable because the methyl orange indicator is slightly acidic, so it would use up the alkaline solution, therefore by only adding a small amount of it will make my results more reliable and accurate. ...read more.


Therefore, I used 0.0253 moles in my standard solution. I now need to use the equation to find the concentration: Concentration (moldm-3) = Number of moles/Volume (dm3) I firstly need to convert 250cm3 to dm3 so that my equation works: 1000cm3 = 1dm3 250cm3 = 0.250dm3 (I divided by 1000). Concentration (moldm-3) = 0.0253moles/0.250dm3 Concentration= 0.101moldm-3 Consequently, I have calculated my sodium carbonate standard solution to have a concentration of 0.101moldm-3, rounded to three significant figures. Concentration of acid I am now going to calculate the concentration of the acid solution; therefore I firstly need to find out how many moles there is of the sodium carbonate solution, by using the equation: Concentration of Na2CO3 (moldm-3) x Volume of Na2CO3(dm3) = Number of moles of Na2CO3 0.101moldm-3 x (25/1000) dm3) =0.00253 moles The equation of my reaction is: Na2CO3 (aq) + H2SO4 (aq) Na2SO4 (aq) + CO2 (g) + H2O(l) This equation shows that the molar ratio of sodium carbonate and sulphuric acid is 1:1 which means is there is 0.00253 moles of sodium carbonate there is 0.00253 moles in sulphuric acid. The average titre as shown above was 20.075cm3, which I need to convert to dm3 which is: 20.075cm3/1000 = 0.0201dm3. I can now use the equation Concentration (moldm-3)= Number of moles/Volume (dm3) Concentration (moldm-3)= 0.0253 / 0.0201 Concentration = 0.126moldm-3. Overall, I conclude that the concentration of the acid solution is 0.126moldm-3. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. Marked by a teacher

    Finding out how much acid there is in a solution

    Unionized litmus is red, and the ion is blue. This helps to determine if the solution is either acid or alkali using litmus paper. Litmus turns red in acid and blue in bases. Once the point of equivalence is reached, it is hard to detect where exactly the point of equivalence has occurred.

  2. Determination of the Amounts of Sodium Hydroxide Solution and Sodium Carbonate in a Mixed ...

    Hydrochloric acid was added into the burette, with the initial readings taken. 10. Using methyl orange as indicator, the solution in the conical flask was titrated until the color changes from yellow to orange. The readings were taken. 11.

  1. Acid-base titration. Objective To determine the concentration of sulphuric acid (H2SO4) using sodium ...

    The beaker was rinsed with a small amount of distilled water and the rinse was transferred into the volumetric flask. The step of rinsing was repeated twice. The funnel was rinsed carefully with distilled water. 6. Distilled water was added to the volumetric flask carefully until the liquid level is about 1 cm below the graduated mark on the flask.

  2. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    When the temperatures in both boiling tubes reaches 303K, pour the contents of boiling tube X into boiling tube Y and start the stop-watch 13. Pour the contents now in boiling tube Y back into boiling tube X, to ensure that the reactants are fully mixed, and place boiling tube X back into the water bath 14.

  1. Acid-Base Titrations.

    exactly equivalent to the number of moles of acid or base present originally in the other solution in accordance with the stoichiometric reaction. Example. The equivalence point for the titration of 50.00 mL of 0.100 molar HCl with 0.200 molar NaOH could be calculated as follows: 50 mL x 0.1 mol/L = 5.0 mmol HCl.

  2. The Determination of rate equation

    Yes No However even though the graph for when HCl is in excess produces a straight line it doesn't not start form the origin (0, 0 co-ordinates) therefore it is not possible to state whether the graph for HCl concentration is first order or not.

  1. Determination of the concentration of limewater solution in g dm-3 as accurately as possible ...

    Balanced equation for my neutralisation reaction is; Ca(OH)2 (aq) + 2HCl (aq) CaCl2 (aq) + 2H2O (l) Calcium hydroxide and Hydrochloric acid react in the ratio 1: 2 Molecular mass of Ca(OH)2 (calcium hydroxide) is 40 + (16�2) + (1�2) = 74g n = m Mr n = 1 74 Where n = the concentration Calcium Hydroxide n =

  2. We are aiming to accurately prepare a standard solution of 0.1 M (mol dm-3) ...

    Insert the stopper of the flask and invert the flask several times to mix the solution (see figure h) Safety Sodium carbonate is an irritant Wear goggles Adaptation to standard procedure: The first thing that we changed was point number 2; we put the weighing bottle on the scales, and zeroed the scales.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work