• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determining the Empirical Formula of Magnesium Oxide and the Chemical Formula of a Hydrate

Extracts from this document...

Introduction

´╗┐Determining the Empirical Formula of Magnesium Oxide and the Chemical Formula of a Hydrate Grade 11 Chemistry (SCH3U0-B) Mr. Martin Experiment Performed on Thursday November 1st, 2012 Written by: Danny Nguyen, Feroze Nooruddin, and Nina Backa Just like pounds, feet, and dozens, the mole (units: mol) is simply yet another counting or grouping unit. To be specific, it is 6.02 x 1023 of whatever that is being counted [3]. In chemistry, the mole is used to group ions, atoms and formula units. The number of particles is valuable information, but it is much more useful if the mass of the particles is also determined. The mass and mole relationship states that a mole of any substance has a mass equal to its atomic mass [7]. In the case of a compound, it is the added value of the separate atomic masses. This value is called the molar mass (units: g/mol). For example, the molar mass of oxygen is 16.00 g/mol, and the molar mass of CO2 is 44.01 g/mol [2]. Any molecule or a compound can be defined by its molecular formula. The molecular formula provides the number of atoms present in each molecule of that compound. For example, the formula for acetate, C2H4O2, indicates that there are 2 carbon atoms, 4 hydrogen atoms, and 2 oxygen atoms in one molecule of acetate. ...read more.

Middle

sulfate can be determined. Knowing this information, it can be predicted that the percentage composition of water in the hydrate is approximately around 60%. Experiment 1: Determining the Empirical Formula of Magnesium Oxide Materials and Method for the Experiment *The procedure for this experiment can be found on pages 212 and 213 in the McGraw-Hill Ryerson textbook.* Some changes to the experiment that might change the results are: Used less amount of Magnesium than stated Experimental Results: Table 1: Qualitative Observations of the Magnesium Before reaction Grey-ish and a relatively shiny solid Product White powder, increase in temperature Table 2: Data obtained while reacting magnesium in air Mass in grams Mass of clean, empty crucible and lid 46.25 ± 0.01 Mass of crucible, lid and magnesium 46.29 ± 0.01 Mass of crucible with lid and magnesium oxide 46.45 ± 0.01 *This charts shows the results of the experiment “Determining the Empirical Formula of Magnesium Oxide”, the data is the weighing of the mass in each stage of the experiment. This data is obtained through, the weighing of the different materials. Calculations (Mass by difference): Mass of Magnesium = (Mass of crucible, lid and magnesium) – (Mass of clean, empty crucible and lid) Mass of Magnesium = 46.29grams – 46.25grams Mass of Magnesium = 0.04grams Uncertainty: General equation when calculating numbers with uncertainty: While addition or subtracting (let e represent uncertainty) ...read more.

Conclusion

sulfate and H2O can be determined in a similar manner. *Refer to the uncertainty equation on Page 3 to calculate all uncertainties. Table 6: Masses of Reactants and Product: Mass of Anhydrate copper (II) sulfate 1.56 ± 0.02 grams Mass of Hydrate copper (II) sulfate 0.73 ± 0.02 grams Mass of H2O 0.83 ± 0.02 grams To determine the chemical formula of a Hydrate: Convert all masses in to moles Mass of Element * = Number of moles 0.73 ± 0.02 grams CuSO4 × = 4.57 × 10^-3 ± 0.02 mol 0.83 ± 0.02 grams H2O × = 0.046 ± 0.02 mol Determine the lowest whole number ratio of all molar quantities: Lowest ratio= CuSO4= = 1 H20= = 4.91 = 5 *In this case, disregard uncertainties as it accounts for only a minor difference to the mole ratio. Therefore, the chemical formula for Hydrate Copper (II) Sulfate is CuSO4 × 5 H2O Determining the mass percent of water in a Hydrate of Copper (II) sulfate: Molar mass of water (H2O)____ x 100% Molar mass of CuSO4 x 5 H2O Molar mass of water= 5 * [(2 * Mass of Hydrogen) + Mass of oxygen] = 5 * [(2 * 1.01) + 16.00] = 90.1 grams Molar mass of CuSO4 = Mass of Copper + Mass of Sulfur + (4 * Mass of oxygen) = 63.55 + 32.06 + (4 * 16.00) = 249.71 grams Therefore, Mass percent of water = 90.1 grams_ x 100% = 36% 249. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. A Redox Titration " Determining the percentage of iron in an iron ore

    Mass of Fe2+ in Solution 'B' = = 5.965g The iron content of 'B' = = g dm-3 Percentage of iron in the ore = = 70.16% Conclusion Percentage of iron in the given spathic ore is 70.16% Discussion Sources of errors - Iron(II)

  2. An Introduction to Qualitative Analysis

    Mg2+ Ca2+ Sr2+ Ba2+ Unknown #B 0.02M K2CrO4 - - light ppt slowly light ppt (yellow) - 0.1M (NH4)2C2O4 - heavy ppt immediately heavy ppt immediately light ppt immediately heavy ppt (white) 0.1M Na2SO4 - - light ppt slowly light ppt immediately - 0.1M NaOH light ppt slowly light ppt immediately - light ppt (white)

  1. Neutralization investigation

    Accuracy There are various types of indicators I can use. These include universal indicator, phenolphthalein and methyl indicator. These indicators work by reacting with the ions inside the substance that is being made. They are not part of the chemical reaction, they simply measure the reaction.

  2. The Determination of rate equation

    [HCl] x [Na2S2O3] y The line of best fit produced in the both graph is a vertical straight line showing that, as the concentration of the HCl or Na2S2O3 increase the reaction rate also increase therefore produces a linear line.

  1. Methods of analysis and detection

    So the EMR used this characteristic to let the atom to lose a photon. Calculate the ionization energy For hydrogen the convergence limit is 3.30 x 1015 Hz, so we can calculate the IE by E=h x f: E = 6.63 x 10-34 x 3.30 x1015 x 6.02 x1023 E

  2. Alkaloids are the most diverse group of secondary metabolites and over 5000 compounds are ...

    Biosynthesis It is possible to determine the amino acid from which an alkaloid is derived just by looking at the structure. Before availability of radio-isotopes 14C and tritium, and more recently the stable isotopes 13C and 15N it was only possible to speculate about the likely biosynthetic pathways.

  1. Analysis of Oxygen Absorber. How can the oxygen absorber absorb oxygen in the ...

    The powder form solid was taken out. The features of oxygen absorber was observed directly first. It was found that the oxygen absorber is reddish brown and black powder. 2. A magnet was used to attract the oxygen absorber. It is found that the oxygen absorber can be attracted by magnet.

  2. Atomic Structure, Bonding and the Periodic Table. Revision questions.

    What type of bonding is present in magnesium metal? Draw a diagram to show how the atoms are and electrons are arranged. Metallic bonds, when magnesium atoms bond, they off-load there two valence electrons to a delocalised electron sea.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work