• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Diffusion of the beetroot discs dye in different bile salt concentration.

Extracts from this document...


Analysing evidence and drawing conclusions In this experiment I generated one set of data plus two additional sets were given for the measurement of light absorbance of beetroot dye using the colorimeter. The data are listed below in Table 1. The first column shows the concentration of the bile salt, the next three columns show the absorbance of the three sets of beetroot dye. The last column gives the average absorbance value for each bile salt concentration. Table 1 Concentration of bile salt (g/100cm3) Absorbance (set # 1) Absorbance (set # 2) Absorbance (set # 3) Total Average absorbance (A) 0.0 0.08 0.08 0.09 0.25 0.08 0.1 0.11 0.07 0.04 0.22 0.07 0.2 0.13 0.08 0.06 0.27 0.09 0.3 0.10 0.11 0.17 0.38 0.13 0.4 0.16 0.17 0.20 0.53 0.18 0.5 0.21 0.09 0.21 0.51 0.17 0.6 0.24 0.09 0.27 0.60 0.20 0.7 0.30 0.15 0.31 0.76 0.25 0.8 0.14 0.13 0.32 0.59 0.20 0.9 0.25 0.25 0.36 0.86 0.29 1.0 0.32 0.25 0.41 0.98 0.32 From the above table there is a clear correlation between the concentration and the absorbance of light. As the concentration increases so does the absorbance increase i.e. the concentration is directly proportional to light absorbance. Bile salts cause beetroot cell membranes to become more permeable, therefore allowing the beetroot anthocyanin to diffuse from within the cell to the outside solution. ...read more.


The value of the Rs for 11 pairs of data at 95% probably is 0.61. The value of the correlation coefficient in my experiment is 0.97 which is greater than 0.61, therefore there is a positive correlation between the concentration of bile salt and the diffusion rate of dye from beetroot cells, I can then say my data supports my hypothesis with 95% confidence. Therefore I have rejected the null hypothesis and accepted the working hypothesis. The rest of the 5% was probability due by chance. The meaning of the statistical test signifies to us ,that we are 95 % confident that the bile salts are causing the removal of the protein from the membranes, thus releasing more anthocyanin through the tonoplast. Conclusions Diffusion of the beetroot discs dye in different bile salt concentration. A vacuole is a membrane-bound organelle that usually contains liquid. All cells have vacuoles, but plants cells differ from animal cells in that their vacuoles are very large, permanent, and usually occupy a position fairly near the centre of the cell. The membrane surrounding a plant cell vacuole is often known as the tonoplast. Plants cell vacuoles contain many different substances in water. These include sugars, storage proteins, pigments such as anthocyanin found in a beetroot vacuole and enzymes. Vacuoles have a wide variety of functions. For example the colour of some flower petals are caused by the pigment held inside vacuole in their cell. ...read more.


Collision theory, theory used to predict the rate of chemical reactions particularly for gases. The collision theory is based on the assumption that for reaction to occur it is necessary for the reacting species (atoms or molecules) to come together or collide with one another. Not all collisions however, bring about chemical change. A collision will be affective in the producing chemical change only if the species brought together possess a certain minimum value of internal energy, equal to the activation energy of the reaction. Furthermore, the colliding species must be oriented in a manner favourable to the necessary rearrangements of atoms and electrons. Thus according to the collision theory, the rate at which a chemical reaction proceeds is equal to the frequency of collision can be calculated with some degree of accuracy only gases (by application of the kinetic theory), the application of the collision theory is limited to gas phase reaction. This theory shows why at higher concentrations of bile salts, the absorption is higher. It is because at higher concentration of bile salts molecules collide with membrane more frequently therefore more damages is caused to the and more anthocyanin is released, making absorption readings higher. Amylase blinds with ester linkage at a special site known as the active site, which has a specific shape that will only fit that portion of the molecule-it is specialised. This is known as the lock and key hypothesis. Bile salt has no effect on the cell wall, which is made of cellulose, because it is full permeable to pigment and bile salt. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Marked by a teacher

    Investigating the effect of temperature on the movement of pigment through beetroot cell membranes.

    4 star(s)

    Repeat the procedure two more times at 80?C with fresh discs of beetroot. 5. As the beaker of distilled water cools, repeat the procedure three times each for the other temperatures (70?C, 60?C, 50?C, 40?C) with fresh discs of beetroot.

  2. Marked by a teacher

    The Effect of Ethanol Concentration on the Permeability of Beetroot Cell Membranes to Betalain

    3 star(s)

    Or intrinsic proteins were the protein spans through the cell membrane, form one side to another. Most act as transport or channel proteins allowing polar molecules to pass through them, were as others act as enzymes. They also: 'form ion channels for sodium potassium etc.

  1. Marked by a teacher

    The effect of temperature on the permeability of beetroot membrane

    3 star(s)

    I also tried to use the same size of beetroots when making the discs as different sizes may contain different amounts of the betalain pigment. * Comment on the appropriateness of the observations/measurements There is some variation in my results which the confidence limits on the graph show.

  2. Marked by a teacher

    An investigation to examine the effects of temperature on membrane stability in beetroot, by ...

    3 star(s)

    pollinating insects and when present in seeds, it attracts birds, which disperse their seeds. Betalains differ from anthocyanins in that they do not change colour when the pH changes, i.e. they are not pH indicators. The properties of the tonoplast and cell membrane mean that the pigment does not leak into the cytosol or the extra-cellular sap of the beetroot.

  1. An investigation into the effect of lipase concentration on the rate of lipid digestion ...

    This will ensure accuracy by highlighting any anomalies and allowing a mean time to be calculated if necessary.

  2. A2 coursework- The effects of bile salts on digestion of fat

    there was little change in pH so there was no point increasing the length of the experiment as on a graph at this point the line would level off. Most of the enzyme-substrate complexes happened in the first 28 minutes as shown from my calculations.


    the same, or 67�C is 1% lower in light transmission than 54�C. This is because once the cell membrane of the beetroot is broken; no difference is made on how much pigment is released. If I had done another temperature preferably at a temperature above 67�C, I would have gotten

  2. The effect of bile salts on the release of Anthocyanin from Beetroot cell membranes.

    rs (Spearman Rank Statistical test) = 1 - 6 ? D2 n(n2-1) = 1 - 6 X 3.5 = 1 - 21 11(112-1) 1320 rs = 1 - 0.016 rs = 0.98 The critical value at 5% significance for 11 pairs of measurements is 0.62.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work