Diffusion, Osmosis and Cell Membranes

Authors Avatar

Diffusion, Osmosis and Cell Membranes

All living things have certain requirements they must satisfy in order to remain alive. These include exchanging gases (usually CO2 and O2), taking in water, minerals, and food, and eliminating wastes. These tasks ultimately occur at the cellular level, and require that molecules move through the membrane that surrounds the cell. This membrane is a complex structure that is responsible for separating the contents of the cell from its surroundings, for controlling the movement of materials into and out of the cell, and for interacting with the environment surrounding the cell.

There are two ways that the molecules move through the membrane: passive transport and active transport. Active transport requires that the cell use energy that it has obtained from food to move the molecules (or larger particles) through the cell membrane. Passive transport does not require such an energy expenditure, and occurs spontaneously.

The principle means of passive transport is diffusion. Diffusion is the movement of molecules from a region in which they are highly concentrated to a region in which they are less concentrated. It depends on the motion of the molecules and continues until the system in which the molecules are found reaches a state of equilibrium, which means that the molecules are randomly distributed throughout the system.

An important concept in understanding diffusion is the concept of equilibrium. There are two types of equilibrium. Static equilibrium occurs when there is no action taking place. Dynamic equilibrium occurs when two opposing actions occur at the same rate. For example, consider a bucket full of water. It is in a state of static equilibrium because the water level stays the same. The water is not moving. If you were to poke a hole in the bottom of the bucket, water would leak out. This system would not be at equilibrium because there is action taking place - water is leaking out - and the water level in the bucket would drop.

Join now!

However, if you were to begin pouring water into the bucket at the same rate that it was leaking out, the water level in the bucket would stay the same because the rate at which the water is entering the bucket is equal to the rate at which it is leaking out. This is an example of dynamic equilibrium, and it applies to nearly everything that happens in the natural world.

Diffusion occurs when a system is not at equilibrium. As an example, suppose you drop one drop of ink into a glass of water. At first, all of the ...

This is a preview of the whole essay