• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Effect of changing the temperature on the resistance of a thermistor

Extracts from this document...

Introduction

Name: Ray Li

Physics Coursework

Aim: Effect of changing the temperature on the resistance of a thermistor

I am going to find out has the temperature effects the thermistor’ resistance in the circuit.

Planning

Method:

  1. Clear the table and take off the needless thing
  2. Use the wires to link all the equipment to complete the circuits.
  3. Put about 25cm3 water in the beaker.  
  4. Turn on the gas to boiling the water.
  5. Look at the thermometer and  record the p.d and current each 5 C
  6. Repeat this experiment.
  7. Put all data into table.
  8. Calculation the resistance and draw the graphs.

The equation is: Resistance(R) = Potential different (p.d.)

                        Current (I)        

Appliance list:

Wires- Use these wires to link all appliances to complete the circuit.

Power Supply- Use these supply the energy into circuit.

Thermistor- I use this to change the resistance in the circuit.

Voltmeter- Measuring the volt in the circuit across the thermistor.

Ammeter- Measuring the current in the circuit through the thermistor.

Beaker- Have thermistor and water made above at same temperature.

Bunsen burner- I am boil the water and increasing the temperature of thermistor.

Thermometer- Measuring the temperature of the thermistor.

...read more.

Middle

45℃

0.0017

1.2

45℃

0.002

1.6

50℃

0.0018

50℃

0.0022

1.2

55℃

0.0021

1.2

55℃

0.0024

1.2

60℃

0.0022

1

60℃

0.00245

1.1

65℃

0.0023

1

65℃

0.0026

1

70℃

0.0025

0.95

70℃

0.0028

1

75℃

0.0025

0.9

75℃

0.003

0.9

80℃

0.0028

0.8

80℃

0.00325

0.9

85℃

0.003

0.8

85℃

0.0033

0.8

90℃

0.00315

0.75

90℃

0.0035

0.8

95℃

0.0033

0.75

95℃

0.0037

0.8

100℃

0.0034

0.75

100℃

0.0039

0.75

There have list of equation:

I will use this equation find out the resistance

Resistance(R) = Potential different (p.d.)

                    Current (I)

I use equation find out the average of resistance:

(Resistance1 + Resistance 2)÷2=Average of resistance.

...read more.

Conclusion

Slope A:

 (1000-570) / (55-35) = 21.5

The gradient is 21.5

Slope B:

(285.7-220.6) / (100 -80) = 4

The gradient is 4

In the second experiment graph:

Slope A:

(997 – 500) / (55 – 35) = 23.5

The gradient is 23.5

Slope B:

(242.4-192.3)/ (55-35) = 4.23

The gradient is 4.23

In the average of resistance

Slope A:

(970.55-535)/ (55-35) = 21.78

The gradient is 21.78

Slope B:

(280-206.45)/ (55-35) =3.68

The gradient is 3.68

The average gradient

Slope A gradient

21.78

Slope B gradient

3.68

In the graph if the gradient is large, there have large current flow in and the low volt, the resistance will high decrease. Also the gradient is small, the resistance will decrease is low.

All the graphs in 35℃ to 55℃ decrease very faster, but the end 80℃to 100℃ is decrease quite slow. This is same with my prediction graph.

Evaluation

In my experiment I should repeat few more times to have more data. This could make the result fair.

In my graphs have some points did not on the best-fit line. I could have some errors in my experiment. It could be read the voltmeter or ammeter not ready correct have some error. I should read quickly. And than the thermometer is not ready measuring the thermistor. Because the thermometer did not close the thermistor. So there have a little error to change the result. So I should use the stand to keep thermometer close the thermistor.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigate how the temperature affects the resistance of a thermistor.

    All equipment must be kept the same in my experiment. The thermistor must be the same one throughout because different sizes of thermistors react differently to heat and they can be made in different ways to react more or less with heat than others.

  2. Investigate the relationship between temperature and resistance in a thermistor.

    0.23 11.46 11.42 11.52 49.83 49.65 50.09 49.86 100 0.25 0.24 0.25 11.42 11.42 11.50 45.68 47.58 46.00 46.42 Analysis From my graph I can clearly see that as the temperature increases the resistance decreases. This is because as the thermistor increases in temperature the lattice atoms move faster and

  1. Experiments with a thermistor

    60 2.19 2.15 2.17 70 1.80 2.00 1.90 80 1.65 1.61 1.63 90 1.40 1.48 1.44 100 1.25 1.45 1.35 Evaluation of Graph When a graph of voltage/V against temperature/oC was plotted, a 'best-fit' curve can be drawn. From the line, it can be deduced that the voltage decreases with the increase in temperature.

  2. Investigation into how the resistance of a thermistor varies with temperature.

    * R1 = the resistance with one battery. * R2 = the resistance with two batteries. * R3 = the resistance with three batteries. * R average = the average resistance for this temperature. Temperature V1 V2 V3 I 1 I 2 I 3 26� 1.6 3.1 4.5 3.4 7.0

  1. Investigating the effect of 'length' on the resistance of a wire

    out and then recorded the readings in a table similar to the one below for the current and voltmeter, I then let the wire cool down by disconnecting the crocodile clip for about half a minute during the time I calculated the resistance for the required length by dividing the voltage by the current.

  2. The effect of temperature on the resistance of a thermistor

    Temperature (C) Volts (V) Current (A) Resistance 20 1.29 3.18 50 1.15 11.07 100 0.80 40.11 Prediction: I predict that the temperature will affect the resistance of the thermistor. By using my own background scientific knowledge and all of the results from my preliminary experiment can verify my prediction.

  1. To investigate how the temperature affects the resistance of a thermistor.

    One factor that must be kept constant during my experiment is the voltage and current in the circuit. This need to stay the same because I am changing the temperature in order to investigate the resistance of the thermistor and because both voltage and current affect the resistance in a

  2. To conduct an experiment that proves that asensor is affected by temperature. In my ...

    In this case, the sensitivity would vary with input. Many instruments, such as light meters, have a logarithmic dependence of output on light input. Resolution: Resolution concerns the ability to detect small changes or differences. The resolution of an instrument is the smallest change of the input that can be detected at the output.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work