• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Elasticity Investigation

Extracts from this document...


Elasticity Investigation AIM In this experiment, we aim to investigate the stretchability of some materials when weights are attached to them. Certain wires/springs/elastic bands will stretch, and will go back to their shape and size, once the material has been let down. Other materials will stretch and then will not go back to their shape. This experiment can be used to simulate how car springs work. to give comfort as you drive along The springs mainly found in the suspensions of cars. These springs will need to be capable of being compressed and extended, several times, and then return back to their previous state in size and shape. The two forces that mainly affect the springs, is compression and extension [this force rarely occurs]. Compression is the weight of the car [which includes the occupants] Extension is due to the 'wheels up and down' energy not being transferred back to the body of the car. ...read more.


After attaching the weights, the material length, will then be measured again. This new length, is the extension length. The difference between the original length and the extended length, is the extension of the material. The experiment is repeated for all the weights [some materials will break/not stretch any further before the full 10 Newton weight is put on], and also for all the materials that are being tested. For safety during the experiment, safety glasses will be worn, in case if the spring breaks under tension, the broken piece will not go into our eyes, and therefore damage them. Also in case the weights fall to the ground, there will be an area where any person cannot enter, but only by the person attaching the weights onto the material. RESULTS Load (in N) ...read more.


From the results I conclude this, due to that the elastic band stretched furthur than the spring on each weight, but then did not return to the shape and size it had previously. The other result for the other materials, has not been used, because the results were not correct, in the way of the extended length and the extension. Out of the two springs used in the results, I conclude, that the best performer in retaining its original size and shape, is a spring that is taut. This disproves my hypothesis. The taut spring is the best because of the way it keeps its shape, but if this tautness of spring was fitted to a car, it would not be very comfortable to ride in. Also after a while there may be damage to the chassis of the car, because the full force is affecting it, and not being sufficiently absorbed by the spring. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. What factors affect the period of a Baby Bouncer?

    The spring constant can be calculated from a load-extension graph, such as Graph(iii). The gradient of the line of best fit gives the spring constant. Thus, the spring constant (k) = 1 / gradient In the case of Graph (iii), k = 1 / (?

  2. The Stiffness Of Springs

    The following graphs show how the spring constant changes for each system against the number of springs. These two graphs show a lot. They show that there is a clear link between the number of springs in a system and the spring constant of that system.

  1. An Experiment To Examine the Effect of Springs In Parallel

    of springs throughout the whole experiment. I will make sure that all the springs that I use are all steel springs. I can't use different materials of springs because I have decided to use all the same type of springs, in this case all steel springs.

  2. An Investigation into the Factors, which affect the Voltage Output of a Solar Cell

    cell surface, which is revealed, is decreased the voltage will also decrease. They are directly proportionate to one another. Therefore I predict the average results will show that as the surface area of the solar cell is decreased by half, the voltage will also decrease by half.

  1. An experiment to investigate and determine how rubber behaves when tension forces are applied ...

    Instead what I am going to do is use a set of apparatus that I explained above and set them up in a way shown below. I will use the apparatus shown above in such a way that the tension force acting on the rubber will be the weights that

  2. Investigation into the elasticity of a set of springs under differing conditions.

    in parallel or in series. For example when the springs are in series the spring stiffness should halve and when two springs are in parallel then the spring stiffness will double. This is because when the force is kept at a constant and the extension decreases then the stiffness increases.

  1. Investigate Whether Elastic Bands and Springs Behave the Same Way.

    To discover if the elastic band and spring return to the original length, results will be recorded when the weights are being unloaded. I have decided to experiment with this variable, as I have the resources and there will be a large scope of results for this investigation.

  2. Investigation into the elasticity of a set of springs under different conditions.

    This is when the spring doesn't return to its original shape. More specifically to our experiment we are investigating the effect of the extension when 2 springs are in parallel. Prediction If the springs follow Hookes law then the graph that should be produced should resemble the graph to the left.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work