• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Electro-magnetic Induction.

Extracts from this document...

Introduction

Ashley Doherty

Electro-magnetic Induction

Plan

During this investigation I shall be looking at electro-magnetic induction. Electro-magnetic induction happens when a magnet is moved in or near a coil. In order for a current to be induced, the coil has to be part of a complete circuit. Even without a complete circuit, a potential difference is still induced across either end of the coil. Moving a magnet into a coil causes a current to be induced in one direction and then moving it back out of the coil induces a current in the opposite direction.

A voltage can only be induced by the movement of the coil in the magnets magnetic field or the movement of a magnetic field round a coil. If there is no movement, then no voltage will be induced.

There are several different input variables that I could change for this experiment, each one having an effect on the induced voltage. These variables are:

  • Strength of the magnet
  • Speed the magnet is moving
  • Number of turns in the coil
  • Area of the cross-section of the coil

The output variable that I am going to measure for the experiment is the voltage that is induced by the input variable.

...read more.

Middle

Connect crocodile clips to either end of the coil.Connect leads to crocodile clips.Plug leads into voltmeter, creating complete circuit.Place foam-filled tub underneath coil.Place the 30cm ruler next to the coil, making sure that it is resting on the table.Take magnet and hold at the top of the ruler with bottom of magnet in line with top of ruler.Drop magnet through the coil.Record the reading on the voltmeter.Repeat five times with each different coil.

Results

I repeated the experiment five times for each different coil and took the average which gave me more accurate results than if I had only done it one for each.

...read more.

Conclusion

Evaluation

In my opinion, my method for this investigation worked well, but I feel that there are a few areas that could have been improved.

The most difficult part of the investigation, I felt, to keep reliable was taking the reading on the voltmeter as the magnet passed through the coil. This is because it moved so fast that it was hard to keep track of with my eyes. This may have resulted in some readings being misread. One way of overcoming this problem would be to use a digital voltmeter that clocked the highest reading reached. Another problem with this investigation is dropping the magnet from the same height, as I tended to move the magnet up or down a little by accident and so the magnet was not always dropped from exactly the same height.

Despite these problems I still think that my results are reliable as all my results are pretty similar. Also my results are pretty close to my line of best fit.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Fields & Forces section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Fields & Forces essays

  1. Investigate the factors affecting the induced e.m.f. in a coil due to the changing ...

    supply, f ), (b) magnetic field strength (current through the solenoid, B), and (c) number of turns of coil N. Theoretically, it is also directly proportional to (d) the induced e.m.f. is increased with increasing area of surface of solenoid A, and (e)

  2. Investigating a factor affecting the voltage output of a transformer.

    in mind whilst carrying out my practical; * The power supply mustn't be on whilst I change the nominal voltage. * The power supply mustn't be switched on until the circuits are fully connected. * I will limit the size of the nominal voltage.

  1. What Affects the Strength of Magnetism Exerted By an Electromagnet?

    Diagrams Figure 2 Figure 3 Theories and How They Work... The theory show above should apply to this investigation. The variable used is the current. Current is measured in 'Amperes'. A transformer is used to scale down the standard British 240 mains voltage to an adjustable current.

  2. Elastictvy of Copper investigation

    2500g 6.0cm 3000g 7cm Preliminary results Mass Extension 500g 2mm 1000g 4mm 1500g 5mm 2000g 7mm 2500g 17mm 3000g 18mm 3500g 25mm Actual Apparatus used: Fair testing After the prelimary results and primary experiment I would say the following would be needed to make this a fair test: - Firstly to use the same wire throughout the experiment.

  1. EMF Investigation - electricity and magnetic fields.

    Hz 0.025 - 0.30 Amps Ideally, all results should be repeated, and the average should be taken to obtain more accurate results. When carrying out the experiment, make sure that the factors are controlled strictly. Make sure that the current is the same, if necessary.

  2. Stopping distance Investigation.

    I will also conduct another investigation, where I increase the mass of the trolley each time, but by adding another trolley on top of it. The average trolley weighs about 815g, and so I will be increasing the mass of the trolley by roughly 815g each time, all the way up to 3 trolleys piled on top of each other.

  1. To see how the number of coils on an electromagnet affect its strength.

    However, bear that in mind, the flowing of electricity causes this effect, not the wire. This is mainly the reason for these devices to be called electromagnets, it an only work when switched on with coils. When and if the current is increased, the field becomes stronger; if it is

  2. Nuclear Magnetic Radiation

    This proton possesses a special property known as 'spin'. Spin in an atom can be thought of as a small magnetic field surrounding it. This magnetic field will cause the nucleus to produce the essential NMR signal. I chose to research into medical physics, as it is a field in which I have little knowledge.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work