• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Electromagnet investigation

Extracts from this document...

Introduction

Tom Cole

        11DSB-11R3

9061

        25/6/02

Electromagnet investigation

An electromagnet works similarly to a normal magnet but with one huge advantage.  A normal magnet is constantly on but an electromagnet can be turned on and off.  This is useful in both the science lab and industry such as a scrap yard.  An industrial investigation of this size is obviously not possible in the science lab so in order to simulate a smaller type of situation I’m going to use small weights.

I plan to find out the different characteristics of an electromagnet by changing the number of coils around the electromagnet and the amount of current which is passed through it. My hypothesis is that the amount of current and or coils which are placed on the magnet will govern the strength of the magnet.

...read more.

Middle

The investigation will require me to increase the amount of coils surrounding the iron bar.  100 coils will be the number I will use but this will change throughout the experiment.  I also plan to see how much weight the electromagnet will hold.

The weights which I will use are 10g each and the apparatus has been designed it will consist of a stand and clamp holding the iron core using a piece of iron I will support the weights from it.

I hypothesize that as the number of coils increases, so will the strength of the magnet.  This is also true with the current.  As I increase the current the magnet will become stronger.  This will happen because the stronger the current passing

...read more.

Conclusion

Scientific Explanation

The current flows threw the wires surrounding the iron core, this creates a magnetic field this is caused as each wire has its own magnetic field so when one wire is curled around the iron bar you find that the magnetic field is twice as powerful and so on and so forth. So by increasing the current flowing threw the wires you increase the strength of the magnetic field, thus allowing the electromagnet’s strength increase to lift a much heavier weight.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Fields & Forces section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Fields & Forces essays

  1. Peer reviewed

    Investigating the forces acting on a trolley on a ramp

    5 star(s)

    Between the 'gate' of the light gate, there are two IR LEDs, which maintain a beam between them. Simply put, when the beam is broken, this sends a signal to the main processor, which starts the timing. The signal from the LED which is detecting the IR radiation sends its

  2. How does the number of coils on an electromagnet affect its strength?

    The magnetic field becomes stronger because the magnetic field around a wire is circular and vertical to the wire, but the magnet fields from each of the turns in the coil add together, so the total magnetic field is much stronger.

  1. Maglev Trains And The Technology Behind Them (magnetism)

    When a magnet moves beside a conductor, the magnetic field inside the conductor will change and a current will be induced. The induced current in turn generates a magnetic field which, according to Lenz's Law that an induced electric current always flows in such a direction that it opposes the

  2. What Affects the Strength of Magnetism Exerted By an Electromagnet?

    If there are many of electrons, as in a conductor, they will all move and an electric current will be detected in the conductor. The reverse should also be true: - If a charged particle is moving then it produces a magnetic field.

  1. Investigating a factor affecting the voltage output of a transformer.

    By looking at my results graph it is possible to see that V1 is certainly not always directly proportional to V2, as the graph curves instead of being straight. Nevertheless I do believe my results to be reliable on account of the smooth trend their averages have produced, and as no anomalies were obtained.

  2. To investigate the effect of current on the strength of an electromagnet field.

    are which align with the direction of the magnetic field, therefore increasing the strength. Also increasing the cross-sectional area increases the number of domains which align in the direction of the magnetic field. We will not change the bar of soft iron in our electromagnet.

  1. To see how the number of coils on an electromagnet affect its strength.

    The North Pole has the current shape going in an 'N' shaped way, and the South Pole has the current going in an 'S' shaped way. In an electromagnet, the same rules apply to every experiment. "The more turns of wires there are, the stronger the magnetic field, current and electromagnet".

  2. Electromagnet Investigation

    Count the number of turns and keep the number the same. Each turn should be as near as it can to the next without being on top of turn and make sure it is touching the iron core. Measure the amount of room without the green wire turned on it at each end.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work