• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Enthalpy changes

Extracts from this document...

Introduction

Enthalpy Changes Analysis Results Recording Test 1 Test 2 Test 3 Units Mass of CaCO3 + weighing bottle 3.50 3.52 3.50 g Mass of empty weighing bottle 1.04 1.01 1.00 g Mass of CaCO3 used 2.50 2.50 2.50 g Temperature of acid initially 21.50 22.00 21.00 �C Temperature of solution after mixing 24.00 24.00 23.00 �C Temperature change during reaction 2.50 2.00 2.00 �C Mass of CaO + weighing bottle 2.52 2.30 2.40 g Mass of empty weighing bottle 1.12 0.90 1.00 g Mass of CaO used 1.40 1.40 1.40 g Temperature of acid initially 22.00 22.50 21.00 �C Temperature of solution after mixing 32.50 32.50 30.00 �C Temperature change during reaction 10.50 10.00 9.00 �C ?H1 The Reaction between CaCO3 + HCL J = m.c. ?T is used to calculate the energy produced using heat capacity of HCL, and 50ml of HCL with the temperature change in the reaction. J = m.c. ?T 50 x 4.2 x 2.5 = -525 J 50 x 4.2 x 2 = -420 J 50 x 4.2 x 2 ...read more.

Middle

If, say 1�C of heat loss was saved lost on each of the above reactions then the resultant enthalpy change would have been very different as we can see by doing the calculations below ?H1 J = m.c. ?T 50 x 4.2 x 3.5 = -735 J 50 x 4.2 x 3 = -630 J 50 x 4.2 x 3 = -630 J AVG = -665 J 665 = -26.6 kJ/mole 0.025 If we do the same for the ?H2 reaction then we get -91 kJ/mole. If we then use Hess's cycle to find ?H3 then we get 117.6 kJ/mole. This shows just how 1�C of heat loss can affect the results of the reaction. To combat this next time I will conceal the experiment in a polystyrene cup. Polystyrene has excellent heat absorbing qualities, and would ensure that little heat is lost during the reaction. I could also put a lid on the beaker during the reaction. ...read more.

Conclusion

?H1 J = m.c. ?T 53 x 4.2 x 2.5 = -556.5 J 53 x 4.2 x 2 = -445.2 J 53 x 4.2 x 2 = -445.2 J AVG = -482.3 J 482 = -19.28kJ/mole 0.025 If we do the same for the ?H2 reaction then we get -87.5 kJ/mole. If we then use Hess's cycle to find ?H3 then we get 68.22kJ/mole. This shows just how 3ml more of HCL could affect the reaction. It could affect it even more as well. If there was a =3ml error on the first reaction and a -3ml on the second then we get 77.6kJ/mole. To stop this from happening again I could use a 50ml pipette to measure the solution to a much smaller resolution Another error in measurements was that the thermometer's resolution wasn't small enough. We could only detect a 0.5�C change in temperature. As we have seen before a temperature error can drastically change the results. To avert this problem next time, I cold use a loggit temperature probe. This is an electronic device that measure temperature to 2 d.p. This would make my results much more reliable. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Organic Chemistry essays

  1. Find the enthalpy change of combustion of a number of alcohol's' so that you ...

    Breaking bonds take in energy on the other hand making of bonds release energy. This explains why more energy is released in the combustion of bigger molecules. For example Butan-1-ol releases more energy than Propan-1-ol which means more CO2 and H2O are formed.

  2. The aim of this experiment is to investigate the enthalpy change of combustion for ...

    The remaining oxygen and two hydrogen atoms, which were part of the alcohol, make up the remaining water molecule, in total producing 5H2O. It is the ease with which the OH group bonds with one of the neighbouring hydrogen atoms that produces one molecule which results in the difference in the enthalpy change of combustion.

  1. Comparing The Enthalpy Change OfCombustion Of Different Alcohols

    From the experiments I have done, there were two types of errors which affected the outcome of my results. These were random and systematic errors. In my experiment I encountered errors due to the accuracy of the measurements. This is a random error.

  2. The aim of this experiment is to produce Aspirin. This is an estrification in ...

    The solution was then placed into the waste beaker. The burette was filled using a funnel with the prepared solution so the meniscus was above the zero mark. Accurate reading was taken by placing a white piece of paper behind the scale.

  1. Compare the enthalpy changes of combustion of different alcohols

    When the apparatus is set up according to the diagram, the testing can begin. The calorimeter consists of a copper can, I will use this instead of a bomb calorimeter which would ensure the alcohol is burned under standardised conditions.

  2. Investigating the Enthalpy Changes of Combustion of Alcohols.

    Anyway, about the specific heat capacity, it is measured in joules per gram per degree Kelvin (Jg-1K-1). Water has a heat capacity of 4.2 Jg-1K-1 (approximate), this means it takes 4.2 joules to raise one gram of water by one degree Kelvin.

  1. investigating the amount of ascorbic acid present in fruit

    Make sure whilst recording results a white tile is used to help record the volume required. Also whilst recording the volume, it is good to have good eye-level, this is needed to ensure accurate results. 21. Clean out the 250cm3 conical flask with distilled water so that it is able to be used again whilst repeating titres.

  2. Comprehensive and Detailed Chemistry notes

    + 3O2(g)� 2CO2(g)+ 3H2O(l) * assess the potential of ethanol as an alternative fuel and discuss the advantages and disadvantages of its use ADVANTAGES AND DISADVANTAGES: -- Ethanol does not release as much energy on combustion as petrol. This means it burns more completely because it is a small molecule.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work