• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Estimation of Iron (II) and Iron (III) concentration

Extracts from this document...


The Estimation of Iron(II) and Iron(III) in a Mixture Containing Both Introduction - theory behind two methods and why I am choosing one of them There are several possible methods that could be employed to determine the concentration of Iron(II) and Iron(III) ions in solution: one of these is colorimetry. Colorimetry is the technique of using the depth of colour of a substance to measure its concentration. We use a colorimeter (see fig. 1 and 2) to measure the depth of colour. The machine is calibrated by checking a series of different known concentrations of solution; from the readings we construct a graph of absorbance (the percentage of light absorbed by the sample) against concentration - this is known as a calibration curve. We can then read off the graph the concentration value that goes with the absorbance value for our unknown solution. Figure 1: A colorimetry set up Figure 2: A colorimeter The machine may be set by the wavelength of the light involved. ...read more.


Another possible method would be a redox (reduction-oxidation) titration. Acidified potassium manganate(VII) is a popular standard solution for use in redox titrations and has the added benefit that it oxidises Fe2+ to Fe3+: MnO4-(aq) + 5Fe2+(aq) + 8H+(aq) --> Mn2+(aq) + 5Fe3+(aq) + 4H2O(l) The solution needs to be well acidified to provide the H+ ions shown in the equation. 2M sulphuric acid could be used to do this. The acid also inhibits the oxidation of Fe2+ to Fe3+ by the air. Without sufficient acid alternative reactions take place and the link between the MnO4- and Fe2+ will be lost. This titrant is self-indicating: a separate indicator is not needed. The manganate(VII) ion is bright violet, but it is reduced to the virtually colourless manganese(II) ion (it is actually very pale pink but looks colourless). When the iron(II) is finally used up, the manganate(VII) is no longer reduced, so the purple colour remains. ...read more.


Different metals would have different electrode potentials. More reactive metals ionise more easily and so they should leave more electrons on the metal before they reach equilibrium. In other words, the more negative the metal is, the more reactive it should be. If we could measure the potential difference between metal and solution we could use it to construct a table of reactivity from the different voltage readings. However, to measure this potential difference we would have to put a metal electrode into the solution and this would have its own electrode potential. A platinum electrode would be placed in a solution which is both 1 mol dm-3 in iron(II) ions and 1 mol dm-3 in iron(III) ions. Iron(II) has the lowest oxidation number and appears nearest the electrode: Fe3+(aq) + e- Fe2+(aq) Cyanide can be used to test if it is completely reduced. Calculations - justify each calculation Safety Table - remember concentrations Apparatus - put in table KMnO4 (0.0025M) Mixture containing unknown concentrations of Fe3+/Fe2+ ions in solution Ferrozine (0.2%) 1M Sulphuric Acid 0. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Inorganic Chemistry essays

  1. Peer reviewed

    Determining the concentration of acid in a given solution

    5 star(s)

    and pour the liquid into the volumetric flask to make sure I have every last bit of the sodium carbonate inside the volumetric flask. I think this is a more accurate and suitable way of measuring out the solid as I can ensure that I have the correct amount of

  2. effects Concentration and Temperature on the Rate of Reaction

    Time Taken When Stirred by Hand (seconds) Time Taken When Stirred by Magnetic Stirrer (seconds) Time Taken When Left Without Stirring (seconds) 0.003 76.0 67.5 60.5 0.004 51.5 52.0 53.5 0.005 41.5 45.5 39.5 0.006 36.0 40.5 44.5 0.008 33.0 29.5 33.5 0.01 31.5 24.0 25.0 From my results a reliable trend can be seen fro the

  1. The preparation, analysis, and reactions of an ethanedioate complex of iron

    The solid was allowed to air dry by suction. The weight of the dry solid was weighed and the yield was calculated. Procedure for Analysis (a)Oxidation with permanganate Two portions of 0.38g of the sample complexes were added into two conical flasks separately. Each sample was dissolved in 10cm3 of water and 15cm3 of dilute sulphuric acid.

  2. Bleaching experiment. Estimation of available chlorine in commercial bleaching solution.

    ethanoic acid because: Ethanoic acid is needed to be excess for speeding up the completion of reaction (1)

  1. Determination of the formula of hydrated Iron (II) Sulphate crystals (FeSO4xH2O)

    sulphate crystals, FeSO4xH2O. Results of titration Original mass of FeSO4xH2O = 3.02 g Rough titration result = 23.10cm3 Titration number Amount of KMnO4 (cm3) amount 1 21.75 2 21.70 3 23.71 4 21.70 Average titration 21.72 The average was taken excluding the anomalous result.

  2. determination of the percentage of oxalate in iron (II) oxalate by redox titration

    9) The reaction mixture was diluted by adding distilled water to the graduation mark of the volumetric flask. 10) The volumetric flask was inverted for ten times to make sure that the solutions inside were well mixed. 11) 10 cm3 of the diluted reaction mixture was transferred to a 250 cm3 conical flask by a pipette.

  1. Chem Lab report. Objective: To determine the concentration of potassium manganate(VII) solution using ...

    Second, potassium manganate(VII) decomposed under sunlight. Therefore, as time goes, molarity of potassium manganate(VII) would decrease. This lead to a larger volume of potassium manganate(VII) solution used in the titration and thus, lead to an error. To reduce this error, it was suggested to add the potassium manganate(VII)

  2. Aim To study the effect of concentration of iodide ion ...

    Apparatus / Materials Pipette (25.00 � 0.03) cm3, pipette (10.00 � 0.02) cm3, pipette (5.00 � 0.01 ) cm3, burette (50.00 � 0.05) cm3, micropipette (1.000 � 0.003) cm3, digital stop watch (� 0.01s) , electronic balance (� 0.001g), sodium peroxodisulphate Na2S2O8 0.04 mol dm-3 solution, standard potassium iodide KI

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work