• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Experiment B11: Measuring focal length of lenses

Extracts from this document...

Introduction

11th February 2009

YMCA of Hong Kong Christian College

A-Level Physics Lab Report

Wong Hoi Sun 6Y34

Experiment B11: Measuring focal length of lenses (Done on 5th February 2009)

Objectives:

  • To measure the focal length of a spherical convex lens by
    (a) the “object & image distance method” and
    (b) the “lens distance method”.  
  • To measure the focal length of a spherical concave lens by
    (c) the “lenses-mirror method” and
    (d) the “lenses combination method”.  
  • To identify the pros and cons of various methods.  

Apparatus:

  • Spherical convex lens with holder
  • Spherical concave lens with holder        
  • Plane mirror
  • Lamp housing
  • White screen                1
  • Metre rule                        2
  • Tissue paper
  • Adhesive tape

Theory:

(Refer to pages.84-86 of “A-Level Practical Physics for TAS (Third Edition)”)

Procedure:

(Refer to pages 86-88 of “A-Level Practical Physics for TAS (Third Edition)”)

Experiment Results and Data Evaluation:

Method (a): Object & image distance method (for a convex lens)

Estimated focal length fx of the convex lens = 10 cm

Object distance u/cm

Image distance v/cm

(1/u)/cm-1

(1/v)/cm-1

u < 2 fx

12

58

0.0833

0.0172

15

28.5

0.0667

0.0351

17

23.5

0.0588

0.0426

u 2 fx

20

19

0.05

0.0526

u > 2 fx

30

15

0.0333

0.0667

40

13

0.025

0.0769

50

12

0.02

0.0833

image00.png

Focal length fu of the convex lens calculated using (1/u)-intercept =

        = 10 cm

Focal length fv of the convex lens calculated using (1/v)-intercept =

        = 9.756 cm

Mean focal length f of the convex lens =

                = 9.878 cm

Uncertainty of the mean focal length

...read more.

Middle

13

28

9.870

s 5.8fx

58

46

12

34

9.517

s 6.2fx

62

49.5

12.5

37

9.980

s 6.6fx

66

54

12

42

9.818

Mean focal length f of the convex lens =

                        = 9.761 cm

Uncertainty

= −−−−−

= 0.154 cm

∴ Mean focal length f of the convex lens = (9.761 ± 0.154) cm

Method (c): Lenses-mirror method (for a concave lens)

Image distance v/cm

Separation between lenses t/cm

Focal length f = vt/cm

u2fx

20

3

17

u1.9fx

21

5

16

u 1.8fx

22

7

15

u1.7fx

23

9

14

u1.6fx

24

11

13

Mean focal length fof the concave lens =

                = 15 cm

Uncertainty = −−−−−

        = 1.2 cm

∴ Mean focal length fof the concave lens = (15 ± 1.2) cm

Method (d): Lenses combination method (for a concave lens)

...read more.

Conclusion

Therefore, method (c): “Lenses-mirror method” should be used as its percentage error is the least.  

In daily life, the above methods can be used.  For example, if people need to determine the focal length of the lens of a camera, they can use method (b): “Lens displacement method” to measure the focal length.  Cameras are made used of two convex lenses to make the light rays converge, so that photographs can be taken.  So, cameras have the apparatus needed for method (b).  To carry out this experiment, the experimentalist has to hold his camera far away from the object and adjust the focus, once the image is sharp, measure the distance between the camera and the object.  Then he needs to walk toward the object without adjusting the focus, once the image is sharp, measure the distance between the camera and the object again.  Repeat the measurement to obtain more pairs of distances, and then just follow the procedure.  The focal length of the lens of a camera then can be found by method (b): “Lens displacement method”.  

Conclusion:

Method (a): “Object & image distance method” is suggested to measure the focal length of a spherical convex lens.  Method (c): “Lenses-mirror method” is suggested to measure the focal length of a spherical concave lens.  

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. An Experiment To Examine the Effect of Springs In Parallel

    I would vary the number of springs. I would do exactly as I did before but this time will also use a pointer (that doesn't get in the way) and make sure all readings are read off very accurately. This time I would use 8 springs instead of 6.

  2. Refractive index by tracing light rays

    In Parts A and B, the pins may not be placed exactly vertical and this will results in an inaccurate observation and measurement of the angles. 2. In Part B of the experiment, the disappearance of the line on the strip may not be clearly determined by our naked eyes and this leads to inaccurate results.

  1. An experiment to investigate and determine how rubber behaves when tension forces are applied ...

    I did in fact pull the rubber band by hand just to see how it reacted when a tension force was applied to it and I found out that up until a certain point of pulling the rubber band becomes more "stiff" and harder to pull until it suddenly breaks.

  2. Investigate any relationship present between the distance between a solar cell and a lamp, ...

    Lamps with white light were chosen, in case the colour of the light had any effect over the results of the experiment. To ensure that nothing like this would happen, the same bulb was used. The frequency (colour) of the light changes the energy and velocity of the light, as

  1. Study the interference of light using Helium - Neon Diode Laser.

    B is viewed in a low-powered microscope or eyepiece M about one metre away. Some coloured interference fringes are then observed by M. A red and then a blue filter, F, placed in front of the slits, produces red and they blue fringes.

  2. How the Length of the Block That the Light Travels Through Varies the Lateral ...

    The problem with using two blocks together is that there will be air trapped in the block, and so that the light will be changed for a fraction of a length because it moves away from the normal and back again.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work