• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Experiment to investigate how the resistance of a strain gauge attached to a piece of wood varies with the temperature of the wood.

Extracts from this document...

Introduction

Experiment to investigate how the resistance of a strain gauge attached to a piece of wood varies with the temperature of the wood.

Aim: The aim of this experiment is to work out the resistance of a strain gauge that has been attached to piece of wood (the same material wood as used in flooring), and see how it varies with its temperature

Procedure.

    To measure the resistance of the block of wood I will use an ammeter to measure the current and a voltmeter to measure the potential difference, and after reading the values, I shall use the equation,

Resistance =Voltage/Current, which will allow me to work out the resistance of the strain gauge.image00.png

...read more.

Middle

image01.png

  I will attach the thermocouple to a millivoltmeter to read the potential difference across it. First I will have to calibrate the thermo couples by heating them up and measure temperature against PD and plot a calibration graph.

I shall have to stick the wood block on to the strain gauge using a substance called Cyanoacrylate, ref 2 or more commonly known as super glue, as this is a very strong adhesive it will stick to the wood strongly.

    On the strain gauge I shall attach the second thermo couple device, this way I shall always have a reading of the resistance of the strain gauge.image02.png

 In order to get

...read more.

Conclusion

image03.png

   In order to get a reliable experiment it would be best to execute this experiment at least 3 times and making an average of the results and using them to make a graph. I will plot a graph of resistance versus temperature for each of the thermocouples to show the resistance at the two points of contact.

  For safety I will handle the wood, wires with gloves as they will be very hot after being heated. Also make sure that I connect the wires in the correct way to prevent the malfunction of components.image04.png

Reference:

1. http://www.huntsman.com/advanced_materials/Media/Aral_2000_(English).pdf

2. http://en.wikipedia.org/wiki/Cyanoacrylate

Asad Shahid 12LR



...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Experimenting with Thermocouples.

    400 500 Iron-Constantan (Type J) 850 1100 Chromel-Constantan 700 1000 Chromel-Alumel 1100 1300 Nicrosil-Nisil 1250 - Tungsten-Molybdenum* 2600 2650 Due to limitations of the actual school resources, I will only use the Copper-Constantan and Iron-Constantan combinations. Tungsten-Molybdenum can only be used at temperatures over 1560 oC The Galvanometer I was advised (from my Physics tutor)

  2. To investigate how the temperature affects the resistance of a thermistor.

    but I do not have enough evidence to support this statement. These properties in a thermistor make it very useful in industry for things such as machinery that can be damaged if it over heats. Putting a thermistor into a circuit such as that could mean that if the machine

  1. I am going to investigate what the resistivity is of a pencil lead. ...

    This means that up to this point (possibly further if it was temperature or simply the characteristic of pencil lead effecting the results) that pencil lead is an ohmic resistor. This means that the current is directly proportional to the voltage applied to the pencil lead.

  2. An experiment to investigate how the resistance between two copper plates immersed in copper ...

    Fair test This experiment was done with only 2 changing variables: * The independent variable: the depth of the copper sulphate solution * The dependent variable: the resistance of the solution In order to make it a fair test, all other possible variables had to be kept the same for each experiment.

  1. To investigate the factors which may affect the resistance of resistance putty.

    To calculate resistance, one needs to know the current reading (in Amperes) and the potential difference over the object we are trying to find the resistance of (measured in volts). To work out the resistance from these two values, the formula: - V = R (i.e. Potential Difference = Resistance)

  2. Measuring weight with a strain gauge.

    At all times, the voltage drops across both of the resistors from A-B-D are equal and total Vs, therefore the voltage drop across each resistor = Vs/2. When the gauge is unstrained the resistance is equal to R1, and the voltage drop across the gauge is V1/2, so Vo = V1/2-V1/2 = 0.

  1. Electronic Components.

    It converts chemical energy to electrical energy. Power source. Push switch Input A switch which is a mechanical device that is spring loaded that will either push to connect or push to break a circuit. They are single pole type switches so only switch on/off a single circuit.

  2. Find out how the current through a filament lamp varies with the potential difference ...

    * Repeat the above steps 2 times. * Now do exactly the same as above but take the readings from 0.10volts to 0.50volts to see if the temperature affects the resistance at this temperature. * Now repeat 2 times * Now take the readings from 1.0volts to 10.0volts making sure to cool down the lamp by switching

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work