• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Factors Affecting The Heating Effect Of A Current.

Extracts from this document...

Introduction

Question: Factors Affecting The Heating Effect Of A Current.

Planning Stage

Introduction

        “Electricity can produce for effects:

HEAT: Hairdryers/kettles, LIGHT: light bulbs, SOUND: speakers, MOTION: motors.

All resistors produce heat when a current flows through them. Whenever a current flows through anything with electrical resistance then electrical energy is converted into heat energy. The more current that flows, the more heat is produced. Also, a bigger voltage means more heating, because it pushes more current through. However, the higher you make the resistance, the less heat is produced. This is because a higher resistance means less current will flow, and that reduces the heating. The amount of heat produced can be measured by putting a resistor in a known amount of water or inside a solid block and measuring the increase in temperature.” (Parsons, 2000)            

“Current flow is accompanied by the transfer of electrical energy and it is often necessary to know the rate at which a device brings about this transfer. The power of a device is the rate at which it transfers energy. If the p.d. across a device is V and the current through it is I, the electrical energy W transferred from it in time t is     W = ItV

The power P of the device will be     P = W     = ItV

                                                                         t         t

                                                       P = IV

The unit of power is the watt (W)

...read more.

Middle

The expression P = V²/R shows that for a fixed supply p.d. of V, the rate of heat production by a resistor increases as R decreases. Now R = pl/A, therefore P = V²A/pl and so where a high rate of heat production at constant p.d. is required, as in an electric fire on the mains, the heating element should have a large cross-section area A, a small resistivity p and a short length l. It must also be able to withstand high temperatures without oxidizing in air (and becoming brittle). Nichrome is the material that best satisfies all these requirements.

Electric lamp filaments have to operate at even higher temperatures in order to emit light. In this case, tungsten, which has a very high melting-point (3400ºC), is used either in a vacuum or more often in an inert gas (nitrogen or argon). The gas reduces evaporation of the tungsten and prevents the vapour condensing on the inside of the bulb and blackening it. In projector lamps there is a little iodine which forms tungsten iodide with the tungsten vapour and remains as vapour when the lamp is working, thereby preventing blackening.” (Duncan, 1973)

        “An effect of electrical current is that it heats the wire through which it is flowing.

...read more.

Conclusion

To make this a fair test, between readings we will cool the thermometer down, back to the original temperature, and we will cool the heater. We will also change the water. We will also make sure we will use the same type of cup, which is polystyrene.

Safety

        Do not carry out the experiment near a sink or tap because water and electricity are dangerous when mixed. Carry out the experiment in the centre of the table, not near the edge. Bags should be put out of the way.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Peer reviewed

    Measurement of the resistivity of Nichrome

    5 star(s)

    if many data points are far from the mean, then the standard deviation is large. Use the equation: ? = R1L /A1 1 ? = R2L /A2 2 Let 1over2, I would get R1 /A1 = R2 /A2 Rearrange the equation R1 /R2 = A1 /A2 As A = ?d�/4

  2. The aim of my investigation is to determine the specific heat capacity of aluminium.

    For higher excess temperatures than this the Five-Fourths Power Law should be used. Radiation in particular is affected by the Five- Fourths Power Law. The theory of the cooling correction is that if Newton's law of cooling applies, the rate of loss of heat to the surroundings dQ/dt, both heating and during cooling is given by dQ/dt = k (?-?o)

  1. Physics - Resistivity

    and the length of the filament in the bulb, I couldn't find these values for a 24 Watt bulb on the internet, so I have to crack open a bulb and using a micrometer and eyepiece graticule, I could examine these factors.

  2. Investigating the effect of 'length' on the resistance of a wire

    two screws will be screwed into the wooden plank at either ends of the ruler, the screws will also be touching the ruler. The wire chosen for the experiment will be tied around the screws more than once, to ensure that the wire is taut and has no kinks to give better accuracy in the results.

  1. resistivity if a nichrome wire

    Resistance ? 1 A Combining the to formulas: R ? l + Resistance ? l = R ? l A A (Expression 1) (Expression 2) (Expression 3) Provided that the temperature is constant, then the only other variable is the type of material it self.

  2. I am going to investigate what the resistivity is of a pencil lead. ...

    As you can see the equation of the line is 1.7984x. This figure represents the resistance of the pencil lead. As this was only the preliminary I will not need this figure. However, if this were the real experiment I would use this figure (which is also the gradient of the line)

  1. Heating Effect of a Electrical Current

    This means if I take a result using the same resistance, voltage and mass of water using the time 1 minute, the temperature will be lower than another result I take using the time 30 minutes. This explains how voltage, mass of water, time affects the temperature.

  2. Geothermal energy is not easily accessible with our current technology. Our main focus was ...

    The next step would involve implementing a new pipe design. This would include a pressurized pipe that would effectively lower the boiling point substantially. This also implies that the water would be heated within the pipe. That means that the magma would heat the pressurized pipe which would allow for more predictability compared to dumping water on pure magma.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work