• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

Find out whether a longer wire or a shorter wire will have more or less current flowing through the wires.

Extracts from this document...


Name: Amritpal Singh Sahota                                  Candidate number: 9723





In this investigation, I am trying to find out whether a longer wire or a shorter wire will have more or less current flowing through the wires.


  1. Thickness Of The Wire

Resistance can be affected by the different thickness of wires. The thicker the wire, then there is less atom to block the path of the electrons and this means that there will be less resistance. However if the wire is thinner then there will be the same number of atoms but fewer electrons will be able to pass through the wire.

Therefore this means that there will be an increase in resistance. The reason due to this is that a thicker wire has more space around the atoms to allow electrons to pass. But in a thinner wire it will be the complete opposite.

This is for a Thick wire                   This is for a Thin wireimage08.pngimage05.png






  1. Length Of The Wire.

The length of the wire is a variable, in which when a longer wire is present the resistance is higher. This is because there are more atoms present, which are in the way of the electrons. They are evenly spread out. However if a shorter wire is present the wire has fewer atoms, which means that the electrons can move more freely.

                                                                 Long Wireimage01.pngimage01.pngimage01.pngimage01.pngimage01.png


                                Short Wire              image05.png

  1. Temperature

Temperature is also a variable for resistance. When a filament lamp is turned on, the heating of the current causes the temperature of the filament lamp to rise very rapidly.

...read more.





In my prediction I predict that the longer the wire the higher the resistance. The current will also be lower. However the lower the resistance the higher the current will be present in the wire. I think this because the current will have to flow through a longer distance and therefore it causes a higher rate of resistance. This is due to the force being pushed and travelled a longer way. If I double the length of the wire, the resistance will also double, which makes the current halve, also that if the current doubles, the resistance haves.


The reason why I think this will happen is because in the wire the electrons will be able to get passed more freely. This is shown in the diagram below.



        Electrons                        Atoms

(I) Current is what flows on a wire or a conductor like water flowing down a river. Current flows from points of high voltage to points of low voltage on the surface of a conductor. Current is measured in (A) Amperes or Amps.

(V) Voltage is the difference in electrical potential between two points in a circuit. It’s the push or pressure behind current flow and through a circuit, and is measured in volts (V).

(R) Resistance determines how much current will flow through a component. Resistors are used to control voltage and current levels. A very high resistor allows a small amount of flow. Resistance is measured in ohms. As the resistance is increased so will the current.



...read more.


I think that the results I had taken was not enough to say what I found was true, because if I had taken the length into more consideration for e.g. going up in 5’s, I would have gathered more and precise results. I also think that considering that I done this experiment in year 9 we could have thought, that we would achieve more precise results if I had gone up in 5’s.

From this I think I could have got even more precise results. The anomalous results that I found was on graph’s 4 - 10 the reason why I think this is because of the variables that are the thickness of the wire, the materials of the wire, the length o the wire and the temperature. I think that I could say that my method is reliable and that someone off the street can follow my method.

In order to extend this work I could have carried out the same experiment but change the lengths of the wires from 10, 20, 30- 100cms. To 5, 10, 15, 20-100cms (so basically increasing in 5cm at each interval). I could also improve this and extend this by using different thickness of wires. Also by using different metal materials. This is because different metals are either poor conductors or good conductors. On the whole I would consider that my experiment was good enough to which a conclusion good be drawn.


  • Author: Graham Booth
  • Lonsdale Science Revision Guide
  • Author: Mary James
  • www.bbc.co.uk/bitesize

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Internal resistance investigation - I will conduct the following investigation with the aim to ...

    However, like any battery, this has a limited life. The electrodes undergo chemical reactions that block the flow of electricity.

  2. Investigating the effect of 'length' on the resistance of a wire

    Length (m) The formula which I will mainly be using in the investigation is the resistance equation: Voltage (V) ____________ = Resistance (R) or V/I = R Current (I) Preliminary Test: I carried out a preliminary test (or a trial run)

  1. resistivity if a nichrome wire

    Some materials have a higher resistance than others due to size and shape. The number describing this property of the material is called the resistivity. This is given the symbol ?. So therefore expression 3 becomes: R = ? ?

  2. Investigate the relationship between electromagnet strength and amount of current flowing through the wire.

    In order to get the best results, I have estimated that in my measurements of current there was, on average, an error of 0.05A either side of each measurement. There was also an average error of 50g in my measurements of mass as I only used 50g and 100g weights.

  1. Relationship between the current and voltage.

    The graph for these were a straight line, with positive gradients which proved my prediction to be correct, see graph one (1 Ohm resistor) and graph two (2 Ohm resistor). This means that ohms law was applicable in this experiment.

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    So it takes time and thus the resistance increases with temperature. This is true for the filament bulb and states the effect of temperature on a metal. Negative Temperature coefficient Thermistor R Temperature In the graph for the Thermistor the axis used are Resistance and temperature.

  1. Experiment on Resistance - different lengths of wire.

    Resistance There are several different factors that affect resistance to reduce the current in the circuit. These are:- Material Different materials can transport electrons through it more quickly than others; therefore different materials are resistors at different levels, depending on which materials are used.

  2. Geothermal energy is not easily accessible with our current technology. Our main focus was ...

    The first step to utilizing all of these ways to lower water?s boiling point is to eliminate impractical methods. The only impractical method stated above would be using a vacuum; otherwise all of the other basic concepts have the potential to be implemented effectively.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work