• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Finding the internal resistance of a power supply.

Extracts from this document...

Introduction

Fiona Shallis 12JPI        PLAN        Physics Practise Investigation

PHYSICS INVESTIGATION : Finding the internal resistance of a power supply.

A range of resistors were used -- different ones were used in the actual experiment than planned -- doesn’t matter though as still good range obtained. --

Aim:

        The aim of this investigation is to find the internal resistance of a solar cell. This will not be measured directly but must be obtained by calculation from values of current and voltage in a circuit incorporating a solar cell.

Equipment:

  • Solar cell (emf about 2V)
  • Lamp (and power pack)
  • Several resistors - 100Ω, 70Ω, 50Ω, 25Ω, 10Ω, 5Ω and 1Ω.
  • Voltmeter
  • Ammeter
  • Clips and connecting leads

The equipment will be set up as shown in the diagram. Multimeters will be used as the voltmeter and ammeter. The lamp will be used to provide light for the solar cell. Various resistors will be used to provide a load resistance, values as above. The experiment will take place in a darkened room.

Method:

...read more.

Middle

        Once the values for each resistor are recorded, they should be added together and divided by 3 to give an average value each for current and voltage. These can then be applied to the following equation to work out the internal resistance of the solar cell.

image00.png

E= I (R+r) and V = I R rearranged to give

V = -rI +E

This corresponds to the equation y = mx + C.

When V is plotted against I and the corresponding equations y = mx + C and

V = -rI +E, then gradient m = - r and C = E.

Safety:

The equipment used is not inherently dangerous but care should be taken not to over heat the circuit. The work area should be clear.

Fair Test & Reliability:

...read more.

Conclusion

        Precision in this experiment is improved by using a wide range of values of resistance. This means that the dependant variable changes significantly so that any trends are more obvious and can be identified easily. Precision will also be improved as the uncertainty value will be calculated. This can be used to gauge the reliability of the results. Repeating the experiment and taking averages increases the likelihood of having results near to the ‘true’ value of what is being measured.

        If all these points are considered and the results show a pattern or trend as expected, it can be assumed that the results are quite reliable. Any obviously anomalous results would decrease the reliability as they are not expected and probably the result of an error in the method or equipment.

Page  of 2

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigating the E.m.f and Internal Resistance of 2 cells on different circuit Structures.

    If all these points are considered and the results show a pattern or trend as expected, it can be assumed that the results are quite reliable. Any obviously anomalous results would decrease the reliability as they are not expected and probably the result of an error in the method or equipment.

  2. In this experiment, we will measure the e.m.f. and the internal resistance of a ...

    So we carry out some experiments to find out which ammeter and voltmeter is more ideal and smaller zero errors. In this experiment, there are some assumptions we had made. Firstly, we assume that he d.c. voltmeter has infinite internal resistance and no current would be drawn from the circuit by the voltmeter.

  1. Internal resistance investigation - I will conduct the following investigation with the aim to ...

    As I explained in my plan (background theory section) because V = E - Ir, if you plot a graph of terminal pd, V, against current, I, as I have done, then the gradient of the graph, ?y/?x, will be equal to the internal resistance of the cell.

  2. Free essay

    Finding the internal resistance of a solar cell

    The solar cell used must remain constant as different solar cells may have varying internal resistances. This can be solved just by making sure that during all tests the solar cell used is always the same one. The wires must stay constant as variation of these wires may affect results of the experiment.

  1. Investigation into the resistance of a filament lamp.

    Make sure that the voltmeter and the ammeter are connected into the circuit correctly. xiii. Once your circuit has been checked switch on the power supply. xiv. Check if the circuit works, and the ammeter and voltmeter is giving you write values.

  2. The aim of the experiment is to verify the maximum power theorem and investigate ...

    The co-ordinate of centroid : (4.88 , 2.80) �s = slope of the graph �s = (2.80 - 0.0) / (4.88 - 0.0) �s = 0.574 (Cor. to 3sig. Fig.) Let the slopes of the two good- fit lines be m1 and m2. m1= ( 1.50 - 2.80)

  1. Find The Internal Resistance Of A Power Supply

    As the current flowing through the power supply increases, the lost volts will increase. If the current decreases, then the lost volts also decreases until the current is zero. At this point, the potential difference across the terminals of the power supply will be equal to its EMF.

  2. Design and Carry Out an experiment to determine the EMF and Internal Resistance of ...

    Ammeter - 0-10A * Voltmeter - 0-10V * Rheostat - 5 amps, 20 Ohms max. PRELIMINARY WORK As a preliminary experiment for this investigation, I was introduced to the principle of electromotive force, by being asked to measure the open voltage of a dry cell (1.5V battery).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work