Page
  1. 1
    1
  2. 2
    2

For my experiment I have chose to create a circuit that will test the temperature of a red wine bottle, to ensure that it is at room temperature, which it is best served at. For me to create this circuit, I will use a thermistor that measures temperature.

Extracts from this document...

Introduction

Chris Davison 12B Mrs. Baker Physics Sensing Coursework For my experiment I have chose to create a circuit that will test the temperature of a red wine bottle, to ensure that it is at room temperature, which it is best served at. For me to create this circuit, I will use a thermistor that measures temperature. This sensor will give out different amp and volt readings depending on the temperature, therefore telling you the temperature the sensor is at. I will arrange my circuit in the following way: As you can see I have kept the circuit linear to ensure that it is as simple as possible. Two parallel wires will be ran off either side of the sensor in the circuit so that the voltage can be measured, and the current will be measured after leaving the cell. The circuit works as a potential divider because of the resister. ...read more.

Middle

The next experiment that I did was with the 10k resister, so I changed the ammeter's settings from 200m to 20m. This then meant that I only ended up getting 0.46 20m amps for all of the readings. If I had changed it back to 200m it would have been too hard to read, and my readings would therefore have been inaccurate as with the 47 k experiment. I needed a mid point between the two on the ammeter's readings. The 2.7 k resister was fine, as this was not very sensitive. The quickest resister in terms of response time was the 47 k resister. This responded quickest when I changed the temperature, but the slowest resister for response time was the 2.7 k resister. I had to regulate certain temperatures for a while with this resister while it changed its readings. I experienced significant random errors with each of my resisters. ...read more.

Conclusion

I came to this conclusion because it has an even balance of sensitivity, resolution and response time. Although the 47 k resister has a very good response time and resolution, it was too sensitive. If used in general manufacturing then it would tell a user varying readings all the time, and would be too confusing. The 2.7 k resister was not very sensitive and didn't have a good resolution. Again, in general manufacturing, it would leave a user waiting too long for a result, and would therefore be impractical. The main problem with the 10 k resister is that for reading the room temperature of a red wine bottle it is a bit too sensitive. It may fluctuate a bit, and therefore confuse a user. It wouldn't fluctuate as much as the 47 k resister, but users may still have problems. If I was to therefore to repeat this experiment, I would like to try a resister between 10 k and 2.7 k to try and lower the sensitivity to stop the fluctuations at the expense of response time and resolution. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. A coursework on sensing temperature with voltage.

    where the experiment took place was 19.8°C On the second day 19th October 2004, the temperature in P1 was 20.1°C. The results of this experiment are reasonably accurate because there are few factors that affect it and they tend to remain fairly constant throughout the experiment for example the impurities

  2. For my sensor project coursework I will be investigating a thermistor.

    Resolution The resolution of a sensor is basically how small a change in the environment the sensor can detect. My sensor should be able to detect a 0.1°C change in temperature so that it can accurately tell the difference between 19°C and 20°C.

  1. Experiments with a thermistor

    The voltage reading increases. CIRCUIT DESIGN OF APPLICATION OF THERMISTORS A thermistor has a wide range of commercial applications, and one of them is to control output devices such as water heaters and temperature alarms. One example of this is a water temperature control in swimming pools.

  2. Investigate how the temperature affects the resistance of a thermistor.

    In my data I did have one anomaly which was the resistance at 400C and I can only think of one factor that could have affected this piece of data. The resistance seems to be smaller than it should be in which case one thing that could have affected it

  1. An Investigation into the Resistance of a Thermistor, its Application as a Sensor and ...

    Results The results have been tabulated below. Temperature (°C) Resistance While heating (ohms) Resistance While Cooling (ohms) Average Resistance (ohms) 25 466 449 457 30 367.8 385 377 35 336.2 281 308 40 277.1 236 257 45 232.4 198 215 50 197.2 162 180 55 162.9 134 149 60 132.7 112 123 65 115.8 93.7 105 70

  2. Build an effective sensing circuit that will be able to measure changes in light ...

    This showed a similar relationship to the first experiment. I also wanted to see how the distance between the bulb and the LDR would affect the resistance of the bulb. I decided to produce another experiment that would give me many values as the distance can easily be changed.

  1. The Purpose of my sensing circuit is to regulate the temperature in a Steam ...

    In the simple potential divider circuit above 1. The current, I= Vin ÷ (R1 + R2) 1. The Potential Difference across R1 VR1= I à R1 = Vin à R1 R1 + R2 = R1____ à Vin R1 + R2 1.

  2. physics sensor coursework

    V1 = (10 × 1000)/ (1000 + 5100) V1 = 1.64 V Then I worked out the voltage across the LDR at terminal A, by adding on the voltage difference to the potential across terminal B: p.d. = VA - VB VA = VB + p.d.

  • Over 180,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work

Marked by a teacher

This essay has been marked by one of our great teachers. You can read the full teachers notes when you download the essay.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review on the essay page.

Peer reviewed

This essay has been reviewed by one of our specialist student essay reviewing squad. Read the full review under the essay preview on this page.