• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12


Extracts from this document...


HYDROLYSIS OF ORGANIC HALOGEN COMPOUNDS Name: Ho Ka Wing (9) Group:3 Grades: Date: 07-09-10 Objective The purpose of this experiment is to find out how the rate of hydrolysis of an organic halogen compound depends on: a the identity of the halogen atom. b the nature of the carbon-hydrogen 'skeleton'. Theory Experiment: In this experiment, the rate of hydrolysis of 1-chlorobutanne, 1-bomobutane, 1-iodobutane, Chlorobenzene is compared. A general equation for the hydrolysis is: R-X + H2O ???? R-OH + H+ + X- (Where R = alkyl or aryl group; X= halogen atom) Hydrolysis of organic halogen compounds is a nucleophilic substitution reaction. In a nucleophilic substitution a lone pair of electron on a nucleophile, H2Ois attracted to a carbon atom, with a partial positive charge. The nucleophile is then substituted for the atom or group attached to the carbon atom. Since halide ions are being substituted out. By following the rate of the reaction by carrying it out in the presence of silver ions, so that any halide ions produced form a silver halide precipitate. Ag+(aq) + X-(aq) ???? AgX(s) By comparing the time for appearance of precipitate, we can compare the rate of hydrolysis. The smaller the time needed, the faster the rate of hydrolysis. ...read more.


7. The tubes were continuously watched for about ten minutes and, in a copy of Results Table 1, the time was noted when a precipitate first appeared in each tube as a definite cloudiness. The water was heat to 60oC again at intervals. 8. Continue observation at intervals for about 30 minutes more, any further changes was noted in the appearance of the precipitates. Results Table Results Table 1 Reaction Time for precipitate to appear Observations A 1-chlorobutane 720 seconds White precipitate was formed B 1-bromobutane 12 seconds Pale yellow precipitate was formed C 1-iodobutane 3 seconds Yellow precipitate was formed D chlorobenzene N/A No obsevation Interpretation of the result bond Bond energy/kJ C-Cl C-Br C-I In halogenoalkanes 338 276 238 365 C-Cl In Comparison between haloalkane They all shows positive results but the rate of hydrolysis is different. Ag+ (aq) + Cl- (aq) � AgCl (s) White precipitate Ag+ (aq) + Br- (aq) � AgBr (s) White precipitate Ag+ (aq) + I- (aq) � AgI (s) Yellow precipitate The reactivity of halo group on the rate of hydrolysis reaction is: 1-iodobutane> 1-bromobutane>1-chlorobutane Bond energy: C-Cl > C-Br > C-I Bond strength: C-Cl > C-Br > C-I Reactivity: RCl < RBr < RI Since we can see that bond energy required to break the C-X bond decrease down the group. ...read more.


* Since the reactants is primary haloalkane which flavors Sn2. The primary carbocation which is less stable is formed. * The reactants are primary haloalkane so they are less bulky. So the steric hindrance is small, results in low energy of transition state and increase the activity in Sn2 mechanism. * Choice of nucleophile strong nucleophile in high concentration flavors Sn1 while weak nucleophile in dilute solution flavors Sn2. And this time in this experiment, H20 is weak nucleophile so it flavors Sn2. * Bimolecular Nucleophilic Substitution , SN2 SN2 applies mainly to methyl and primary haloalkanes. e.g.C4H9Br + OH????C4H9OH + Br- Mechanism: In this mechanism, the rate determining step involves 2 molecules (H2O and RX.).Hence, we use the term 'bimolecular'. And the rate of reaction should depend on the concentrations of both chlorobutane and hydroxide ion. Hence a second order reaction is observed. rate = k[H2O][RX] The energy change for this SN2 mechanism is shown below. Energy level diagram of the Sn2 reaction 2. Hydolysis for phenol( industrial process) halobenzene only undergo nucleophilic substitution of the halogen atom at extreme condition(conc.NaOH,350 oC, 200atm to give phenol) 3. Photodecomposition of AgBr At the end of experiment, there is some grey precipitate deposited in one of the tubes.It is mainly due to the fact that silver bromide is decomposed to give silver. 2AgBr(s) ????2Ag(s) + Br2 (g) Reference http://chemophile.pbworks.com/f/Halogenoalkanes.pdf http://en.wikipedia.org/wiki/Haloalkane ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Organic Chemistry essays

  1. Marked by a teacher

    Experiment to determine the ethanol content of wine

    5 star(s)

    0.9835 0.9836 0.98355 11 0.9822 0.9818 0.98200 12 0.9806 0.9809 0.98075 13 0.9793 0.9794 0.97935 14 0.9779 0.9781 0.97800 15 0.9767 0.9765 0.97660 16 0.9752 0.9753 0.97525 17 0.9741 0.9737 0.97390 18 0.9724 0.9726 0.97250 19 0.9713 0.9711 0.97120 20 0.9698 0.9699 0.96985 Calibration Graph To Check the Accuracy of

  2. Marked by a teacher

    Experiment to Determine Acidities of Wine. The purpose of this experiment is to ...

    5 star(s)

    10.2 21.5 10.3 22 10.4 22.5 10.6 23 10.7 24 10.7 25 10.7 26 10.8 27 10.8 28 10.8 30 10.9 32 11 34 11.1 36 11.2 Calculations Calculating the Volatile Acidity of Each Wine Australian It took 19.7cm3 of NaOH to reach the equivalence point of pH 8.2.

  1. Aim A. To compare the rates of hydrolysis ...

    Discussion 1. The equations of the reactions are: A. CH2ClCH2CH2CH3 + H2O --> CH2OHCH2CH2CH3 + H+ + Cl- CH2BrCH2CH2CH3 + H2O --> CH2OHCH2CH2CH3 + H+ + Br- CH2ICH2CH2CH3 + H2O --> CH2OHCH2CH2CH3 + H+ + I- B. C. Ag+ + Cl- --> AgCl Ag+ + Br- --> AgBr Ag+ + I- --> AgI 2.

  2. Preparation of haloalkane. The purpose of this experiment is to prepare 2-chloro-2-methylpropane from ...

    Volume of 2-methylpropan-2-ol used = 9.0 cm3 Density of 2-methylpropan-2-ol = 0.7809 gcm-3 Weight of 2-methylpropan-2-ol used = 9.0 � 0.7809 = 7.0g Molar mass of 2-methylpropan-2-ol = (12.0�4 +16.0 +10�1.0) = 74.0 gmol-1 The theoretical number of moles of 2-chloro-2-methylpropane obtained = Number of moles of 2-methylpropan-2-ol = =

  1. Qualitative Analysis (A combined approach using spectroscopic and chemical analysis for structural identification of ...

    or 3,5- dimethylphenol(65-66?C). As it was given that the m.p. of BS is 22-23?C, only one possibility matched which are 2,4- dimethylphenol. For BL with the given molecular mass of 88.11 g, the only possibilities found in data book were C3H4O3, C4H8O2, C5H12O.

  2. Organic Compounds

    The catalyst is phosphoric (V) acid coated onto a solid silicon dioxide support. If you use too much steam, it dilutes the catalyst and can even wash it off the support, making it useless. Production by fermentation A solution of sucrose, to which yeast is added, is heated.

  1. Rates of Halogenoalkanes

    Chemicals: 0.60g (0.20g used 3 times) of 1-bromobutane. Mass was shown to be sensible by my preliminary experiment. 0.60g is required as the procedure will be performed 3 times, with 0.20g being needed each time. 0.42g (0.14g used 3 times)

  2. The aim of this experiment is to investigate the enthalpy change of combustion for ...

    any of the alcohols other than ethanol, which was used, for the trial run. There were just to many causes of error using this method, for example there was a substantial amount of heat lost into the surroundings and also through the copper calorimeter which would have conducted the heat away.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work