• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

I am going to investigate the rate of reaction between catalase and hydrogen peroxide.

Extracts from this document...

Introduction

Catalase Investigation. I am going to investigate the rate of reaction between catalase and hydrogen peroxide. Background: After researching in CD-ROMs, text-books, and the internet, I have found the following information that may also be relevant to this project: Hydrogen Peroxide: Hydrogen Peroxide has a formula of H[2]O[2], being a chemical compound of hydrogen and oxygen. It is a clear, colourless, syrupy liquid (though water-like in appearance). Hydrogen peroxide is made as a by-product of some chemical reactions that take place in our cells. One place this is particularly common is in the liver. Hydrogen Peroxide will blister the skin if in contact. It decomposes very slowly at room temperature, but rapidly in water and oxygen when magnesium oxide is added. Pure H[2]O[2] liquid may explode violently if heated to a temperature above 100�C, which proves that concentrated solutions are unstable. Being aware to this, I will need to take necessary precautions; Goggles must be worn when handling H[2]O[2], and special care not to spill any on the skin (plastic gloves may be needed). The liquid solidifies at -0.41�C and is non-flammable at any concentration. It is soluble in water and the usual commercial concentrates available are 3% and 30% aqueous solutions. To slow down the decomposition of H[2]O[2] into water and oxygen, it is kept in dark bottles at low temperatures, and organic substances like acetanilide, are added to the solutions. H[2]O[2] acts as a reducing and oxidizing agent (redox). The bleaching of substances (hair, ivory, feathers, delicate fabrics, paper, pulp etc), which would be destroyed by other agents, are carried out using H[2]O[2]'s oxidising properties. ...read more.

Middle

conclusion that that may be inaccurate, as the bubbles may be different sizes, and we cannot establish a relative unit for measuring the total amount. So we decided to use an up-turned measuring cylinder, filled with and in a tub of water, with the tube underneath. This way we can accurately measure the oxygen and give recognisable units. (See Page 5 For diagram). In the experiment I will record the amount of oxygen gas produced every 15 seconds so that I can see if the speed the gas being made changes as the reaction undergoes. For the catalase effect on hydrogen peroxide investigation it would be best to choose one of these continuous variables to study: Volume of catalase enzyme Temperature of surroundings Volume of hydrogen peroxide Consistency of time recorded Strength of hydrogen peroxide [image008.gif] For my experiment my variable is going to be the concentration of hydrogen peroxide (in vol). Required Hydrogen Peroxide solution: 5 vol 10 vol 15 vol 20 vol Hydrogen Peroxide (ml): 2.5ml (25%) 5ml (50%) 7.5ml (75%) 10ml (100%) Water (ml): 7.5ml 5ml 2.5ml 0ml Total Volume (per experiment): 10ml 10ml 10ml 10ml Total Volume of Hydrogen Peroxide (whole experiment): 3 x 2.5 = 7.5 3 x 5 = 15 3 x 7.5 = 22.5 3 x 10 = 30 7.5 + 15 + 22.5 + 30 = 75ml Chemicals and Apparatus needed: Quantity: Potato Homogenate (Catalase enzyme) Hydrogen Peroxide (20 vol) Clamp Stands Bosses Clamps 20ml Syringe 5ml Syringe (to measure catalase) Test tube 100ml Measuring Cylinder (upturned) Plastic Tub Delivery Tube U-tubes Bung (with two holes) Water (to fill tub and measuring cylinder) ...read more.

Conclusion

* The force of the hydrogen peroxide being thrust into the catalase from the syringe will have been different as it was by inaccurate human ways. * The apparatus may have not been airtight (letting some oxygen produced escape). * Oxygen was already in the airtight apparatus before the solution began reacting, so this would obscure results. * When the u-tube was put under the measuring tube some needed oxygen may have accidentally escaped. * The potato homogenate was not pure catalase, so the results were not accurate, in comparison to the hydrogen peroxide. Prototype Apparatus (before) [image010.gif] We considered many of these problems before starting the experiment, so after a few dummy runs using the equipment layout as above, we used trial and improvement and we came up with these solutions: * We put vaseline around any joints, to create an air tight seal. * We swapped the catalase and the hydrogen peroxide around, so that the H[2]O[2] was in the syringe where as it had a larger volume (less chance of getting stuck in the tube). * We changed the syringe tube to vertical (less chance of contents getting stuck). * We used a manageable small amount of catalase to a larger amount of H[2]O[2] (approximately 1:15), which we found that the oxygen production rate was not too fast to measure. * We used a large measuring cylinder (we found that with even small amounts of solution, there is enough oxygen produced to almost fill a 100ml measuring cylinder). If I were to do this experiment again, I would consider all these problems more thoroughly. I would try and get access to more accurate measuring equipment and chemicals. By Rachel Morrell 9Mg [image011.gif] [image012.gif] ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Marked by a teacher

    Enzymes - investigate how the substrate concentration (H2O2) affects the activity of catalase on ...

    3 star(s)

    Therefore I predict that as the concentration of hydrogen peroxide is increased, the rate of reaction will also increase. It will increase until the point where the enzyme has reached its Vmax and the rate of reaction becomes constant and plateaus.

  2. The effect of Copper Sulphate concentration on Catalase activity on Hydrogen Peroxide.

    enzymes, so the rate of reaction will not double with enzyme concentration, but the reaction will still speed up. At a certain point of enzyme concentration, the reaction will not get faster, even if more enzyme is added, because all the substrate molecules will be bound to the active sites of enzymes potato tubes of the same length (5 cm)

  1. To investigate the rate at which hydrogen peroxide is broken down by the enzyme ...

    therefore an enzyme molecule will hit a substrate molecule more frequently and cause a reaction when the substrate successfully collides with the enzyme's active site. When the enzyme is less concentrated it is less likely that the enzyme molecules will hit a substrate, as frequently and therefore there will be

  2. Catalyse Investigation

    at a temperature of around 55�C. At this temperature the average rate of reaction was 0.029 (arbitrary units). This temperature is much higher than the natural temperature of the ileum (37�C) where sucrase is secreted in the body and functions naturally. At 37�C, in this investigation, the rate of reaction can be estimated at around 0.015 (arbitrary units)

  1. Investigating the effects of Copper Sulphate on the action of Catalase Enzyme breaking down ...

    Using a knife I will then cut the skin off the potato. After this I will cut the potato into long strips 1cm wide by using the potato chipper. As stated from my preliminary work, I will then cut the potato into cubes, which each have a total surface area of 6cm2.

  2. Investigating the effect of the Temperature on the Enzyme Catalase when it reacts with ...

    Why I made the prediction is because, changing the temperature would speed up the rate of the chemical reaction of the enzyme because, when heating any substance the heat supplies a form of kinetic energy to the reacting molecules, making the molecules move rapidly.

  1. Yeast cells contain enzymes. I am going to investigate the enzyme catalase.

    am putting in the test tube * Yeast balls, to rise to the surface of the hydrogen peroxide * Test tube rack, to put the test tube once we have heated it * Safety goggles, to guard my eyes from heat and danger * Bunsen burner, to heat the hydrogen

  2. Investigating the Effect that Copper Sulphate has on the Action of the Enzyme Catalase

    I believe that my results will produce a graph similar to this: Apparatus: * 2M copper sulphate solution * liver * 20 volume hydrogen peroxide * distilled water * clamp stand * gas cylinder * conical flasks * three measuring cylinders * scalpel * stopwatch Method: Experiment Volume H2O2 /

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work