• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

I am going to investigate the rate of reaction between catalase and hydrogen peroxide.

Extracts from this document...

Introduction

Catalase Investigation. I am going to investigate the rate of reaction between catalase and hydrogen peroxide. Background: After researching in CD-ROMs, text-books, and the internet, I have found the following information that may also be relevant to this project: Hydrogen Peroxide: Hydrogen Peroxide has a formula of H[2]O[2], being a chemical compound of hydrogen and oxygen. It is a clear, colourless, syrupy liquid (though water-like in appearance). Hydrogen peroxide is made as a by-product of some chemical reactions that take place in our cells. One place this is particularly common is in the liver. Hydrogen Peroxide will blister the skin if in contact. It decomposes very slowly at room temperature, but rapidly in water and oxygen when magnesium oxide is added. Pure H[2]O[2] liquid may explode violently if heated to a temperature above 100�C, which proves that concentrated solutions are unstable. Being aware to this, I will need to take necessary precautions; Goggles must be worn when handling H[2]O[2], and special care not to spill any on the skin (plastic gloves may be needed). The liquid solidifies at -0.41�C and is non-flammable at any concentration. It is soluble in water and the usual commercial concentrates available are 3% and 30% aqueous solutions. To slow down the decomposition of H[2]O[2] into water and oxygen, it is kept in dark bottles at low temperatures, and organic substances like acetanilide, are added to the solutions. H[2]O[2] acts as a reducing and oxidizing agent (redox). The bleaching of substances (hair, ivory, feathers, delicate fabrics, paper, pulp etc), which would be destroyed by other agents, are carried out using H[2]O[2]'s oxidising properties. ...read more.

Middle

conclusion that that may be inaccurate, as the bubbles may be different sizes, and we cannot establish a relative unit for measuring the total amount. So we decided to use an up-turned measuring cylinder, filled with and in a tub of water, with the tube underneath. This way we can accurately measure the oxygen and give recognisable units. (See Page 5 For diagram). In the experiment I will record the amount of oxygen gas produced every 15 seconds so that I can see if the speed the gas being made changes as the reaction undergoes. For the catalase effect on hydrogen peroxide investigation it would be best to choose one of these continuous variables to study: Volume of catalase enzyme Temperature of surroundings Volume of hydrogen peroxide Consistency of time recorded Strength of hydrogen peroxide [image008.gif] For my experiment my variable is going to be the concentration of hydrogen peroxide (in vol). Required Hydrogen Peroxide solution: 5 vol 10 vol 15 vol 20 vol Hydrogen Peroxide (ml): 2.5ml (25%) 5ml (50%) 7.5ml (75%) 10ml (100%) Water (ml): 7.5ml 5ml 2.5ml 0ml Total Volume (per experiment): 10ml 10ml 10ml 10ml Total Volume of Hydrogen Peroxide (whole experiment): 3 x 2.5 = 7.5 3 x 5 = 15 3 x 7.5 = 22.5 3 x 10 = 30 7.5 + 15 + 22.5 + 30 = 75ml Chemicals and Apparatus needed: Quantity: Potato Homogenate (Catalase enzyme) Hydrogen Peroxide (20 vol) Clamp Stands Bosses Clamps 20ml Syringe 5ml Syringe (to measure catalase) Test tube 100ml Measuring Cylinder (upturned) Plastic Tub Delivery Tube U-tubes Bung (with two holes) Water (to fill tub and measuring cylinder) ...read more.

Conclusion

* The force of the hydrogen peroxide being thrust into the catalase from the syringe will have been different as it was by inaccurate human ways. * The apparatus may have not been airtight (letting some oxygen produced escape). * Oxygen was already in the airtight apparatus before the solution began reacting, so this would obscure results. * When the u-tube was put under the measuring tube some needed oxygen may have accidentally escaped. * The potato homogenate was not pure catalase, so the results were not accurate, in comparison to the hydrogen peroxide. Prototype Apparatus (before) [image010.gif] We considered many of these problems before starting the experiment, so after a few dummy runs using the equipment layout as above, we used trial and improvement and we came up with these solutions: * We put vaseline around any joints, to create an air tight seal. * We swapped the catalase and the hydrogen peroxide around, so that the H[2]O[2] was in the syringe where as it had a larger volume (less chance of getting stuck in the tube). * We changed the syringe tube to vertical (less chance of contents getting stuck). * We used a manageable small amount of catalase to a larger amount of H[2]O[2] (approximately 1:15), which we found that the oxygen production rate was not too fast to measure. * We used a large measuring cylinder (we found that with even small amounts of solution, there is enough oxygen produced to almost fill a 100ml measuring cylinder). If I were to do this experiment again, I would consider all these problems more thoroughly. I would try and get access to more accurate measuring equipment and chemicals. By Rachel Morrell 9Mg [image011.gif] [image012.gif] ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Marked by a teacher

    Enzymes - investigate how the substrate concentration (H2O2) affects the activity of catalase on ...

    3 star(s)

    For the volumes of reactants I was using this was inappropriate, because the graduations were very large for this. Therefore as a result the accuracy of the measurements were very limited and would not be appropriate to use for this experiment.

  2. The effect of Copper Sulphate concentration on Catalase activity on Hydrogen Peroxide.

    From this point the rate of reaction will decrease to a point at which it will be zero. At low temperatures the reaction will take place slowly, for the reason that the molecules are moving slowly. This means substrate molecules will not collide with the active site very often, so the substrate and enzyme rarely bind.

  1. To investigate the rate at which hydrogen peroxide is broken down by the enzyme ...

    The factors that affect the rate of reaction (decomposition of hydrogen peroxide) are shown below: * Enzyme concentration - the amount of catalase present in celery extract * Substrate concentration - hydrogen peroxide * Temperature * pH level I have chosen to investigate the concentration of the enzyme Catalase.

  2. Catalyse Investigation

    A control was carried out in this investigation to ensure that it was the presence of the enzyme sucrase alone, that was breaking down sucrose to glucose and fructose and that only the effect of temperature was being measured. This was achieved by carrying out the experiment described above for

  1. Investigating the effects of Copper Sulphate on the action of Catalase Enzyme breaking down ...

    For this reason all other factors must be kept the same. For the reaction to be fair, the only changing factor in this experiment will be the concentration of the solution, in terms of percentage volume of copper sulphate As well as this there are some factors I will not be able to control.

  2. Investigating the effect of the Temperature on the Enzyme Catalase when it reacts with ...

    Why I made the prediction is because, changing the temperature would speed up the rate of the chemical reaction of the enzyme because, when heating any substance the heat supplies a form of kinetic energy to the reacting molecules, making the molecules move rapidly.

  1. Investigating the Effect that Copper Sulphate has on the Action of the Enzyme Catalase

    Hypothesis: Based on my research, I believe that copper sulphate is an inhibitor of the reaction between the enzyme catalase and hydrogen peroxide. I predict that my results will show that the greater the concentration of copper sulphate, the greater will be the inhibition and thus the slower the rate of the enzyme controlled reaction.

  2. The Rate of Decomposition of Hydrogen Peroxide with Catalase.

    These will go up in the way of a straight line on a graph hence directly proportional. Time should show an exponential curve and at a 100% concentration catalase the time taken will be half that of the time at a 50% concentration.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work