• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

I am going to investigate what the resistivity is of a pencil lead. Pencil lead is made from a combination of finely ground graphite and clay, mixed with water and pressed together at high temperatures into thin rods

Extracts from this document...

Introduction

Finding Out The Resistivity Of Pencil Lead

Plan

Hypothesis

I am going to investigate what the resistivity is of a pencil lead.  Pencil lead is made from a combination of finely ground graphite and clay, mixed with water and pressed together at high temperatures into thin rods. Graphite is largely made up of carbon, which is quite a good conductor of electricity, but clay is not.  This means the more clay that is mixed within the pencil lead the higher the resistance will be.  The resistivity of a material is an individual property.  It does not depend on the dimensions of the component only the materials from which it is made.  To do this I will first have to find the resistance of the pencil lead.  For the resistance I expect the graph to look something like this:

image00.png

image20.pngimage21.pngimage05.pngimage16.png

The reason I predict the graph to look like this is because I think, and assume, that pencil lead will be an ohmic resistor.  The graph will therefore look like this because the characteristic of an ohmic graph is that of above (a straight line).  This means that current is directly proportional to the voltage.  The gradient of the graph is also the resistance of the pencil lead.  The gradient will then be taken along with the cross-sectional area and the length of the pencil lead and put into the resistivity formula.  However I think that there is a distinct possibility that the pencil lead may have the characteristics of a semi conductor, as carbon is a semi conductor.  This means that the graph could look like this:

image21.pngimage22.png

image16.pngimage23.png

image01.png

image02.pngimage03.png

image04.pngimage05.png

image00.png

However, pencil lead also contains clay that is a good insulator of electricity so may affect this characteristic but if the graph were to look like this it is because carbon is a semi conductor.

...read more.

Middle

The temperature of the pencil lead will affect the resistance.  It is especially important that this remains the same as materials that are ohmic resistors, at high temperatures, can change the characteristic of the material (no longer is an ohmic resistor).  The higher the temperature the higher the resistance because the electrons move faster and the positive ions vibrate more due to an increase in kinetic energy.  This means that there are more collisions between them leading to an increase in the resistance.  To achieve keeping the temperature of the pencil lead constant I will let the pencil lead cool for a couple of minutes after each reading as well as keeping windows closed to try and keep the room temperature constant.

  1. I will first of all measure the diameter (using a micrometer as this is an accurate piece of equipment) of the pencil lead and the length (using the mm ruler).  I will be measuring the diameter of the pencil lead three times throughout the experiment to try and make sure that I get an accurate reading that remains constant.
  2. I will then setup the circuit that is displayed above.  The reason why I will be using a potential divider circuit is because I can get a higher range of voltages as well as it also helps in getting the voltage more accurate.  I will place the crocodile clips on the end of the pencil lead and take the width of the clips off the total length of the lead.  The reason I will do this is because the crocodile clips will be conducting the electricity at the points where they are attached so the lead is only conducting past these clips.
...read more.

Conclusion

-6.  If I were to use a more accurate voltmeter the percentage error could have been cut down drastically meaning that my actual result would have been more accurate.

If I repeated the experiment I might also use a different piece of lead.  The piece of lead could be of a different softness/hardness, a different diameter or a different length.  I would then take one of these variables and see what happens to the resistance and then the resistivity of the lead.

Note:  The actual resistivity of graphite is 7.84x10-6.  There are many reasons why my result does not match up with that of the actual figure.  There are three main reasons:

  1. The percentage error of this experiment was large and so would have probably had a huge effect on the outcome of the result.  In a laboratory there would be much more accurate equipment which would have meant that the percentage error would practically be 0%.
  2. The actual resistivity of constantan will be in controlled conditions.  This means that the pressure would have remained constant along with the temperature etc.
  3. The final main reason is that the pencil lead that I used does not just contain graphite.  In fact it contains a variety of materials including clay.  This would have a large effect on my result.

*When I measured the diameter all three readings read 2.725mm.

Richard Burn                The Resistivity Of A Pencil Lead

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Peer reviewed

    Measurement of the resistivity of Nichrome

    5 star(s)

    (V) An ammeter (0-1A) Record the current (A) Several leads Join components in the circuit 1. Check if there is a zero error of the ammeter and the voltmeter. 2. The apparatus shown in the diagram below was set up. Check whether the ammeter and the voltmeter are linked in the correct range.

  2. Measuring The Resistivity Of A Pencil Lead.

    I carried out my test five times at one-minute intervals at the two extremes of my pencil length so I could see if the resistance would fluctuating too much. In my preliminary work I was also looking to see if the pencil would heat up, I would be able to

  1. Physics - Resistivity

    Mathematically the temperature dependence of the resistivity '?' of a metal is given by a formula called the Bloch-Gruneissen formula. The Bloch-Gruneissen equation is quite complicated and is as follows. Different materials also affect the resistance of the wire, for example copper is a better conductor than steel, steel is a better conductor than silicon, and so on.

  2. Characteristics of Ohmic and Non-Ohmic Conductors.

    These conditions apply to all metallic conductors. Therefore, a thick, short piece of copper will offer negligible resistance when compared with a long copper wire. This is because it is much easier for the electrons in the copper to move through a greater area and the smoother the flow of electrons, the larger the current.

  1. Investigating the effect of 'length' on the resistance of a wire

    The thicker wires were not giving me suitable readings nor were they giving a suitable range of results (the ammeters to be used do not go that high). I also tested different input voltages and I came to the conclusion that I should use two batteries of 1.5V each (3V total input voltage).

  2. Characteristics of Ohmic and Non Ohmic Conductors.

    When we have to check if the certain substance conducts we can place it in a circuit. When a metal is placed in the circuit, an electric field is created. This electric field has charges and these charges have forces on them.

  1. To investigate the resistance of a conducting material as its length changes.

    � Circuit wires � Modified Bulldog clips (2) The circuit should be assembled as shown above; the slide on the rheostat should always be adjusted so that the digital voltmeter reads 1 volt. The current should be recorded for the following lengths of graphite paper: Voltage/V Length/cm 1 45 1

  2. The aim of the experiment is to verify the maximum power theorem and investigate ...

    = 0.895 m2= ( 5.5 - 3.55) / (8.0 - 4.88) = 0.625 ?m = [(0.895 - 0.727) + (0.625 - 0.727)] /2 = 0.033 The value of coefficient of static friction �s: 0.727 � 0.033 The maximum error in the value of coefficient of static friction �s: 0.727 � 0.033 Maximum percentage error in the value

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work